Respuesta:
0,0560 cal / gºC.
Explicación:
Cantidad de calor; (Q)
Q = mcΔt; Δt = t2 - t1
m = masa, c = capacidad calorífica específica; Δt = cambio de temperatura
c de agua = 1 cal / gºC
c de aluminio = 0,22 cal / gºC
QTotal = Q de agua + Q de aluminio
Q de agua = 450 * 1 * (26 - 23) = 1350 cal
Q de aluminio = 60 * 0.22 * (26 - 23) = 39.6 cal
QTotal = 1350 + 39,6 = 1389,6 cal
Calor perdido = calor ganado
QTotal = calor perdido
- 1389,6 = 335,2 * c * (26 - 100)
-1389,6 = −24804,8 * c
c = 1389,6 / 24804,8
c = 0,056021 cal / gºC.
Capacidad calorífica específica de la plata = 0,0560 cal / gºC.
Answer:
It is equal to the overall momentum before collision, so far no external object is involved.
Explanation:
Momentum is always conserved during collision as a rule. This is equal to the product of the mass and velocity. Thank you.
Answer:
Explanation:
The equation for this, since we are talking about weight on an elevator, is Newton's 2nd Law adjusted to fit our needs:
where the Normal Force needed to lift that elevator car is the tension. So the equation then becomes
T = ma + w where T is the tension in the cable to lift the elevator, m is the mass of the elevator (which we have to solve for), a is the acceleration of the elevator (positive since it's going up), and w is the weight of the elevator (which we have as 5500 N). Solving first for mass:
w = mg and
5500 =- m(10) so
m = 550 kg. Now we have what we need to solve for the tension:
T = 550(4.0) + 5500 and
T = 2200 + 5500 so
T = 7700 N
There is no definite end to earths atmosphere, but technically the border between the outer space and earth gets thinner as you move up from the earths surface. The Karman line is the closest definition there is which describes the end of the earth's atmosphere, it is 100 km above earth's sea level at approximately 1.56 % of total earth's radius. This describes the boundary between the outer space and the atmosphere.