We know, F = m*a
Here, F = 600-400 = 200 N downwards
m = 60 Kg
Substitute their values,
a = 200/60
a = 20/6
a = 10/3
a = 3.33 m/s² downwards
In short, Your Answer would be 3.33 m/s² downwards
Hope this helps!
The equation for potential energy is denoted as;
Pe = mgh,
where m = the mass, g = acceleration due to gravity, and h = vertical height of the apple. We are given the units for everything but height, which is also what we are solving for. We can then algebraically rearrange our initial equation to solve for h;
h = (Pe)/(mg)
Plug in your given units, and solve!
Post-check:
h = Pe/mg
h = 175J/(0.36g)(-9.81m/s^2)
h = appr. 49.5 meters
Note: Potential energy is a vector quantity; the displacement of the apple will be a negative number, but the distance itself, a scalar quantity, will be the absolute value of that.
C. hydrogen accreted onto a white dwarf from a close companion rapidly fuses to helium, releasing a large amount of energy.
The accreted material, composed mainly of hydrogen, is compacted on the surface of the white dwarf due to the intense gravitational force on that place. As material accumulates, The white dwarf becomes increasingly hot, until it reaches the critical temperature for ignition of nuclear fusion.
Incomplete question as the angle between the force is not given I assumed angle of 55°.The complete question is here
Two forces, a vertical force of 22 lb and another of 16 lb, act on the same object. The angle between these forces is 55°. Find the magnitude and direction angle from the positive x-axis of the resultant force that acts on the object. (Round to one decimal places.)
Answer:
Resultant Force=33.8 lb
Angle=67.2°
Explanation:
Given data
Fa=22 lb
Fb=16 lb
Θ=55⁰
To find
(i) Resultant Force F
(ii)Angle α
Solution
First we need to represent the forces in vector form

Total Force

The Resultant Force is given as

For(ii) angle
We can find the angle bu using tanα=y/x
So

Answer:
A
Explanation:
The asteroid belt is the farthest from the sun, so that means it will take the longest to orbit.