
- Speed of the mobile = 250 m/s
- It starts decelerating at a rate of 3 m/s²
- Time travelled = 45s

- Velocity of mobile after 45 seconds

We can solve the above question using the three equations of motion which are:-
- v = u + at
- s = ut + 1/2 at²
- v² = u² + 2as
So, Here a is acceleration of the body, u is the initial velocity, v is the final velocity, t is the time taken and s is the displacement of the body.

We are provided with,
- u = 250 m/s
- a = -3 m/s²
- t = 45 s
By using 1st equation of motion,
⇛ v = u + at
⇛ v = 250 + (-3)45
⇛ v = 250 - 135 m/s
⇛ v = 115 m/s
✤ <u>Final</u><u> </u><u>velocity</u><u> </u><u>of</u><u> </u><u>mobile</u><u> </u><u>=</u><u> </u><u>1</u><u>1</u><u>5</u><u> </u><u>m</u><u>/</u><u>s</u>
<u>━━━━━━━━━━━━━━━━━━━━</u>
Answer:
2.7067 eV
Explanation:
h = Planck's constant = 
c = Speed of light = 
= Threshold wavelength = 459 nm
Work function is given by

Converting to eV


The work function W0 of this metal is 2.7067 eV
Answer:
i. The radius 'r' of the electron's path is 4.23 ×
m.
ii. The frequency 'f' of the motion is 455.44 KHz.
Explanation:
The radius 'r' of the electron's path is called a gyroradius. Gyroradius is the radius of the circular motion of a charged particle in the presence of a uniform magnetic field.
r = 
Where: B is the strength magnetic field, q is the charge, v is its velocity and m is the mass of the particle.
From the question, B = 1.63 ×
T, v = 121 m/s, Θ =
(since it enters perpendicularly to the field), q = e = 1.6 ×
C and m = 9.11 ×
Kg.
Thus,
r =
÷ sinΘ
But, sinΘ = sin
= 1.
So that;
r = 
= (9.11 ×
× 121) ÷ (1.6 ×
× 1.63 ×
)
= 1.10231 ×
÷ 2.608 × 
= 4.2266 ×
= 4.23 ×
m
The radius 'r' of the electron's path is 4.23 ×
m.
B. The frequency 'f' of the motion is called cyclotron frequency;
f = 
= (1.6 ×
× 1.63 ×
) ÷ (2 ×
× 9.11 ×
)
= 2.608 ×
÷ 5.7263 × 
= 455442.4323
f = 455.44 KHz
The frequency 'f' of the motion is 455.44 KHz.
The answer is:
Heat transfer.In order to heat up water there has to be a way that the heat puts energy into the water,which make is rise in temperature.
I hope this helps :D
Answer:
The time is 106.7 minute.
Explanation:
Given that,
Density 
Current 
Diameter of wire = 1.2 mm
Length = 31 cm
We need to calculate the drift velocity
Using formula of drift velocity


Put the value into the formula


We need to calculate the time
Using formula for time


Where, l = length
= drift velocity
Put the value into the formula



Hence, The time is 106.7 minute.