Answer:
The shortest transverse distance between a maximum and a minimum of the wave is 0.1638 m.
Explanation:
Given that,
Amplitude = 0.08190 m
Frequency = 2.29 Hz
Wavelength = 1.87 m
(a). We need to calculate the shortest transverse distance between a maximum and a minimum of the wave
Using formula of distance

Where, d = distance
A = amplitude
Put the value into the formula


Hence, The shortest transverse distance between a maximum and a minimum of the wave is 0.1638 m.
Answer:
See Explanation
Explanation:
Sound is a mechanical wave. A mechanical wave requires a material medium for propagation. This means that sound waves must be carried in air. If there are no air molecules, sound waves can not travel.
When air is gradually removed from the jar by the pump, the sound intensity from the bell gradually decreases owing to the fact that air which is the medium through which sound waves are propagated is gradually being removed from the jar.
Increase .... decrease .... presumably it's the "best shape" for a body which has been formed by the gravitational force
Which of the following pairings are more likely to be held together with the strong nuclear force
Explanation:
1.What does a strong nuclear force do in an atom? It repels electrons from other electrons. It repels protons from other protons. It attracts protons and neutrons.
2.The chain reaction requires both the release of neutrons from fissile isotopes undergoing nuclear fission and the subsequent absorption of some of these neutrons in fissile isotopes.
3.The strong nuclear force holds most ordinary matter together because it confines quarks into hadron particles such as the proton and neutron. In addition, the strong force binds these neutrons and protons to create atomic nuclei.