Acceleration = speed/ time
a = Δv/Δ t
as Δv = v₂ - v₁ / t
a = 50m /s - 0 m/s / 60m
= 50m/s / 60m
= 0.834s⁻¹
The most interesting thing about this problem is that in order to use all of the given information, you need to ignore the laws of Physics, and never mind what the stone would really do if dropped from a real bridge in the real world.
Average velocity = (displacement) / (time for the displacement)
Displacement =
Straight path from the start point to the finish point = 45 meters down .
Time = 4.6 seconds
Average velocity = 45/4.6 = <em>9.783 meters/second down</em>
==================================
In the real world, a dropped stone would only take 3.03 seconds
to fall 45 meters.
Alternatively, a stone that fell for 4.6 seconds from rest would fall
103.7 meters, with an average velocity of 22.5 meters/second down.
But we accepted the given information, and did the best we could do
with it.
Answer:
Perfume is a mixture of fragrant oils in an ethanol/water solvent. The ethanol/water mixture, which is volatile, evaporates from the droplets within a few seconds, leaving behind a droplet of the fragrant compounds in the perfume. These compounds will also eventually evaporate to form a vapor of the fragrant molecules
Search up criterion and look at the examples and then read it and then make it in your own words
If you're careful, you ought to be able to observe ANY of these properties
without any effect on the substance:
Absorption, albedo, angular momentum, area, color, concentration,
density, elasticity, electric charge, electrical conductivity, flow rate,
electrical impedance, electric potential, fluidity, length, location, mass,
luminance, luminescence, luster, magnetic field, momentum, opacity,
permeability, permittivity, plasticity, pressure, radiance, solubility, spin,
specific heat, resistivity, reflectivity, refractive index, temperature,
thermal conductivity, velocity, viscosity, or volume.