Answer:
233.1 miles per hours
Explanation:
Speed: This is defined as the ratio of distance to time. The S.I unit of speed is m/s. speed is a vector quantity because it can only be represented by magnitude only. Mathematically, speed can be expressed as,
S = d/t ....................... Equation 1
Where S = speed of the runner, d = distance covered, t = time.
Given: d = 100 meter , t = 9.580 seconds
Conversion:
If, 1 meter = 0.00062 miles
Then, 100 meters = (0.00062×100) miles = 0.62 miles.
Also
If, 3600 s = 1 h
Then, 9.580 s = (1×9.580)/3600 = 0.00266 hours.
Substitute into equation 1
S = 0.62/0.00266
S = 233.1 miles per hours.
Hence the runner speed is 233.1 miles per hours
Answer:
0.04455 Hz
Explanation:
Parameters given:
Wavelength, λ = 6.5km = 6500m
Distance travelled by the wave, x = 8830km = 8830000m
Time taken, t = 8.47hours = 8.47 * 3600 = 30492 secs
First, we find the speed of the wave:
Speed, v = distance/time = x/t
v = 8830000/30492 = 289.58 m/s
Frequency, f, is given as velocity divided by wavelength:
f = v/λ
f = 289.58/6500
f = 0.04455 Hz
Electromagnetic Waves:
Radio waves, television waves, and microwaves.
The formula we use
here is:
radial acceleration =
ω^2 * R <span>
110,000 * 9.81 m/s^2 = ω^2 * 0.073 m
<span>ω^2 = 110,000 * 9.81 / 0.073
ω = 3844.76 rad/s </span></span>
<span>and since: ω = 2pi*f --> f = ω/(2pi)</span><span>
f = 3844.76 / (2pi) = 611.91 rps = 611.91 * 60 rpm
<span>= 36,714.77 rpm </span></span>
Answer:
100 cm³
Explanation:
Use ideal gas law:
PV = nRT
where P is absolute pressure, V is volume, n is number of moles, R is ideal gas constant, and T is absolute temperature.
n and R are constant, so:
P₁V₁/T₁ = P₂V₂/T₂
If we say point 1 is at 40m depth and point 2 is at the surface:
P₂ = 1.013×10⁵ Pa
T₂ = 20°C + 273.15 = 293.15 K
P₁ = ρgh + P₂
P₁ = (1000 kg/m³ × 9.8 m/s² × 40 m) + 1.013×10⁵ Pa
P₁ = 4.933×10⁵ Pa
T₁ = 4.0°C + 273.15 = 277.15 K
V₁ = 20 cm³
Plugging in:
(4.933×10⁵ Pa) (20 cm³) / (277.15 K) = (1.013×10⁵ Pa) V₂ / (293.15 K)
V₂ = 103 cm³
Rounding to 1 sig-fig, the bubble's volume at the surface is 100 cm³.