Answer:
C. Both (1, 11) and (-1, -5)
Step-by-step explanation:
The missing options are:
<em>
A. Only (1, 11)
</em>
<em>B. Only (-1, -5) </em>
<em>C. Both (1, 11) and (-1, -5)
</em>
<em>D. Neither </em>
To check if an ordered pair is a solution of an equation, replace one variable into the equation an calculate the other one.
Replacing x = 1, we get:
y = 8(1) + 3
y = 11
then (1, 11) is a solution
Replacing x = -1, we get:
y = 8(-1) + 3
y = -5
then (-1, -5) is a solution
Answer:
C. solution:
3(3c-2) = 5(2c-1)
or, 9c-6 = 10c-5
or, -6+5 =<em> </em>10c-9c
or, -1 = 1c
Hence, c = -1.
D. solution:
5(5-2a) = 4(6-a)
or, 25-10a = 24 - 4a
or, 25-24 = -4a+10a
or, 1 = 6a
or, 1/6 = a
Hence, a = 1/6.