1/2 x3 + 3.4y
1/2 3(2) + 3.4(5)
1/2 3X2 + 3.4X5
1/2 6 + 8.4
1/2 14.4
0.5 + 14.4
14.9
I think this is the answer. I might be wrong!
Have a great day! :D
To find slope use the equation (y2 - y1) / (x2 - x1)
5 - 4 / 2--2
1/-4
The slope is -1/4
Hope this helps :)
Answer:
x=64°
Step-by-step explanation:
x=180-90-26 (angles on a str line)
=64°
Answer: 5.6
===================================
Work Shown:
cos(angle) = adjacent/hypotenuse
cos(B) = AB/BC
cos(62) = AB/12
12*cos(62) = AB
AB = 12*cos(62)
AB = 5.63365875
AB = 5.6
The Riemann sum with n = 6, taking the sample points to be midpoints is - 12.0625
<h3>What is Riemann sum?</h3>
Formula for midpoints is given as;
M = ∑0^n-1f((xk + xk + 1)/2) × Δx;
From the information given, we have the following parameters
Let' s find the parameters
Δx = (3 - 0)/6 = 0.5
xk = x0 + kΔx = 0.5k
xk+1 = x0 + (k +1)Δx
Substitute the values
= 0 + 0.5(k +1) = 0.5k - 0.5;(xk + xk+1)/2
We then have;
= (0.5k + 0.5k + 05.)/2
= 0.5k + 0.25.
Now f(x) = 2x^2 - 7
Let's find f((xk + xk+1)/2)
Substitute the value of (xk + xk+1)/2)
= f(0.5k+ 0.25)
= 2(0.5k + 0.25)2 - 7
Put values into formula for midpoint
M = ∑05[(0.5k + 0.25)2 - 7] × 0.5.
To evaluate this sum, use command SUM(SEQ) from List menu.
M = - 12.0625
A Riemann sum represents an approximation of a region's area from addition of the areas of multiple simplified slices of the region.
Thus, the Riemann sum with n = 6, taking the sample points to be midpoints is - 12.0625
Learn more about Riemann sum here:
brainly.com/question/84388
#SPJ1