This is a double replacement reaction; the ions switch twice.
A good example is the mineral<span> plagioclase. Plagioclase is a member of the feldspar group, but </span>there<span> is more than one type of plagioclase.</span>
A quantitative observation is not necessarily more useful than a non-quantitative one. However, quantitative observations do allow one to find trends.
(a), the sun rising is a non-quantitative observation.
(b), knowledge of the numerical relationship between the weight on the Moon and on Earth, is a quantitative observation.
(c), watching ice float on water does not involve a measurement; therefore, it must be a qualitative observation.
(d) the fact that we know that the water pump won’t work for depths more than 34 feet makes it quantitative. Again, seeing numbers is a giveaway that it’s a quantitative <span>observation. Quantitative is where you deal with numbers.</span>
No, isotopes would have a different number of electrons
Decay constant, proportionality between the size of a population of radioactive atoms and the rate at which the population decreases because of radioactive decay.
<h3>What is decay constant value?</h3>
The rate of disintegration is proportional to the number of atoms at any point in time and the constant of proportionality is called the radioactivity decay constant. The radioactive decay constant for Radium B is approximately 4.3 × 10−4 s−1.
<h3>What is decay constant unit?</h3>
Definition. The decay constant (symbol: λ and units: s−1 or a−1) of a radioactive nuclide is its probability of decay per unit time. The number of parent nuclides P therefore decreases with time t as dP/P dt = −λ. The energies involved in the binding of protons and neutrons by the nuclear forces are ca.
Learn more about decay constant here:
<h3>
brainly.com/question/16623902</h3><h3 /><h3>#SPJ4</h3>