<span>The molecular formula that describes the problem is
2CH3COOH (aq) + Ca(OH)2 (s) ---> Ca(CH3COO)2 (aq) + 2H2O (l)
The net equation is written as follows:
2CH3COOH- (aq) + 2H+ (aq) + Ca(OH)2 (s) ---> Ca2+ (aq) + 2 CH3COO- (aq) + 2H2O (l)
canceling out spectator ions
2H+ (aq) + Ca(OH)2 (s) ---> Ca2+ (aq) + 2 H2O (l)</span>
Answer:
creation of radioactive wastes such as uranium mill tailings, spent (used) reactor fuel, and other radioactive wastes.
Explanation:
Nuclear energy produces radioactive waste
A major environmental concern related to nuclear power is the creation of radioactive wastes such as uranium mill tailings, spent (used) reactor fuel, and other radioactive wastes. These materials can remain radioactive and dangerous to human health for thousands of years.
Answer: 4.41 atm
Explanation:
Given that,
Original pressure of oxygen gas (P1) = 5.00 atm
Original temperature of oxygen gas (T1) = 25°C
[Convert 25°C to Kelvin by adding 273
25°C + 273 = 298K
New pressure of oxygen gas (P2) = ?
New temperature of oxygen gas (T2) = -10°C
[Convert -10°C to Kelvin by adding 273
-10°C + 273 = 263K
Since pressure and temperature are given while volume is held constant, apply the formula for Charle's law
P1/T1 = P2/T2
5.00 atm /298K = P2/263K
To get the value of P2, cross multiply
5.00 atm x 263K = 298K x V2
1315 atm•K = 298K•V2
V2 = 1315 atm•K / 298K
V2 = 4.41 atm
Thus, the new pressure inside the canister is 4.41 atmosphere