Answer:
12) 
11) 
10) 
9) 
8) 
7) 
6) 
5) 
4) 
3) 
2) 
1) 
Step-by-step explanation:
12)
y - 4 = −(x - 4)
y - 4 = −x + 4
+ 4 + 4
__________

_______________________________________________
11)
y + 2 = 12(x + 2)
y + 2 = 12x + 24
- 2 - 2
____________

_______________________________________________
10)
y - 1 = 5(x - 1)
y - 1 = 5x - 5
+ 1 + 1
_________

_______________________________________________
9)
y - 5 = −2(x + 2)
y - 5 = −2x - 4
+ 5 + 5
___________

_______________________________________________
8)
y - 5 = 2(x + 2)
y - 5 = 2x + 4
+ 5 + 5
__________

_______________________________________________
7)
y + 4 = 12(x - 2)
y + 4 = 12x - 24
- 4 - 4
____________

_______________________________________________
6)
4x - 3y = −6
-4x - 4x
__________
−3y = −4x - 6
___ _____
−3 −3

_______________________________________________
5)
4x - y = 2
-4x - 4x
_______
−y = −4x + 2

_______________________________________________
4)
x - y = 0
______
−y = −x

_______________________________________________
3)
7x - 5y = 35
-7x - 7x
_________
−5y = −7x + 35
___ ______
−5 −5

_______________________________________________
2)
2x - y = 4
-2x - 2x
_______
−y = −2x + 4

_______________________________________________
1)
2x - 3y = 24
-2x - 2x
_________
−3y = −2x + 24
___ _______
−3 −3

I am delighted to assist you anytime.
The time to complete 2 levels is (c) 60 minutes
<h3>How to determine the time to complete 2 levels?</h3>
The table of values is given as
Number of Levels Time (hours)
2 ?
3 1.5
Express the blank (?) with y
Number of Levels Time (hours)
2 y
3 1.5
The ordered pairs from the table are
(x, y) = (2, y) and (3, 15)
The table shows the proportional relationship
This means that the equation can be represented as
y = Y/X * x
Where
(x, y) = (2, y)
(X, Y) = (3, 1.5)
So, we have
y = 1.5/3 * 2
Evaluate the quotient
y = 0.5 * 2
This gives
y = 1 hour
Convert to minutes
y = 60 minutes
Hence, the time is 60 minutes
Read more about linear equation at
brainly.com/question/13738662
#SPJ1
Answer: None
Step-by-step explanation:
There are no pairs of congruent sides, so the triangles cannot be proven congruent.