Answer:
CE = 17
Step-by-step explanation:
∵ m∠D = 90
∵ DK ⊥ CE
∴ m∠KDE = m∠KCD⇒Complement angles to angle CDK
In the two Δ KDE and KCD:
∵ m∠KDE = m∠KCD
∵ m∠DKE = m∠CKD
∵ DK is a common side
∴ Δ KDE is similar to ΔKCD
∴ 
∵ DE : CD = 5 : 3
∴ 
∴ KD = 5/3 KC
∵ KE = KC + 8
∵ 
∴ 
∴ 
∴ 
∴ 
∴ KC = (8 × 9) ÷ 16 = 4.5
∴ KE = 8 + 4.5 = 12.5
∴ CE = 12.5 + 4.5 = 17
Responder:
24 litros; 16 litros; 4 litros
Explicación paso a paso:
Dado que:
Gasolina consumida = 20 litros
Sea la cantidad de gasolina en el tanque = x
Primera parte del viaje = 2/3 de x
Segunda parte del viaje = 1/2 de (x - 2x / 3)
Cantidad de gasolina en el tanque:
2x / 3 + 1/2 (x - 2x / 3) = 20
Solución para x
2x / 3 + x / 2 - x / 3 = 20
(4x + 3x - 2x) / 6 = 20
5 veces / 6 = 20
5 veces = 20 * 6
5 veces = 120
x = 120/5
x = 24
Cantidad de gasolina en el tanque = 24 litros
Litros consumidos en cada etapa:
Primera parte = 2/3 de 24 = 48/3 = 16 litros
2a parte = 0.5 de (24 - 16) = 0.5 * 8 = 4 litros
Answer: $37.20
Step-by-step explanation:
Just add those 2 amounts together
So firstly, we have to find the LCD, or lowest common denominator, of 9 and 7. To do this, list the multiples of 9 and 7 and the lowest multiple they share is going to be your LCD. In this case, the LCD of 9 and 7 is 63. Multiply x^2/9 by 7/7 and 2y/7 by 9/9:

Next, add the numerators together, and your answer will be: 
Answer: See Below
<u>Step-by-step explanation:</u>
NOTE: You need the Unit Circle to answer these (attached)
5) cos (t) = 1
Where on the Unit Circle does cos = 1?
Answer: at 0π (0°) and all rotations of 2π (360°)
In radians: t = 0π + 2πn
In degrees: t = 0° + 360n
******************************************************************************

Where on the Unit Circle does
<em>Hint: sin is only positive in Quadrants I and II</em>


In degrees: t = 30° + 360n and 150° + 360n
******************************************************************************

Where on the Unit Circle does 
<em>Hint: sin and cos are only opposite signs in Quadrants II and IV</em>


In degrees: t = 120° + 360n and 300° + 360n