the sum of supplementary angles is 180 degree
therefore
x +2x = 180°
3x = 180
X = 180/3 = 60°
the value of X is 60°
Your answer would be 0.05
Answer:
6 ft
Step-by-step explanation:
Given that:
Length of rectangular banner = 18 ft
Total trim of banner available = 48 ft
To find:
Possible widths of the banner = ?
Solution:
Maximum trim available of the banner around the entire border of the banner = 48 ft
i.e. we are given the total perimeter of the rectangular banner.
Formula for perimeter of a rectangle is given as:
![Perimeter = 2 \times (Length + Width)](https://tex.z-dn.net/?f=Perimeter%20%3D%202%20%5Ctimes%20%28Length%20%2B%20Width%29)
Putting the values of perimeter and length to find the value of width.
![48 = 2 \times (18 + Width)\\\Rightarrow 48 =36+2 \times Width\\\Rightarrow 2 \times Width = 48-36\\\Rightarrow 2 \times Width = 12\\\Rightarrow \bold{Width = 6\ ft}](https://tex.z-dn.net/?f=48%20%3D%202%20%5Ctimes%20%2818%20%2B%20Width%29%5C%5C%5CRightarrow%2048%20%3D36%2B2%20%5Ctimes%20Width%5C%5C%5CRightarrow%202%20%5Ctimes%20Width%20%3D%2048-36%5C%5C%5CRightarrow%202%20%5Ctimes%20Width%20%3D%2012%5C%5C%5CRightarrow%20%5Cbold%7BWidth%20%3D%206%5C%20ft%7D)
So, width possible is <em>6ft.</em>