The answer is 5.75.Not exact but close
Answer:
The volume of the composite figure is:
Step-by-step explanation:
To identify the volume of the composite figure, you can divide it in the known figures there, in this case, you can divide the figure in a cube and a pyramid with a square base. Now, we find the volume of each figure and finally add the two volumes.
<em>VOLUME OF THE CUBE.
</em>
Finding the volume of a cube is actually simple, you only must follow the next formula:
- Volume of a cube = base * height * width
So:
- Volume of a cube = 6 ft * 6 ft * 6 ft
- <u>Volume of a cube = 216 ft^3
</u>
<em>VOLUME OF THE PYRAMID.
</em>
The volume of a pyramid with a square base is:
- Volume of a pyramid = 1/3 B * h
Where:
<em>B = area of the base.
</em>
<em>h = height.
</em>
How you can remember, the area of a square is base * height, so B = 6 ft * 6 ft = 36 ft^2, now we can replace in the formula:
- Volume of a pyramid = 1/3 36 ft^2 * 8 ft
- <u>Volume of a pyramid = 96 ft^3
</u>
Finally, we add the volumes found:
- Volume of the composite figure = 216 ft^3 + 96 ft^3
- <u>Volume of the composite figure = 312 ft^3</u>
6 times 12 is 72 so 14 times 12 would be 168 if that is what you are looking for. So for that y=168 :-)
I believe it’s that they made it a democracy :) hope this helps !
We can use quadratic formula to determine the roots of the given quadratic equation.
The quadratic formula is:

b = coefficient of x term = 5
a = coefficient of squared term = 1
c = constant term = 7
Using the values, we get:
So, the correct answer to this question are option E and F