Answer:
Because Rutherford's model was weak on the position of the electrons, Bohr focused on them. He hypothesized that electrons can move around the nucleus only at fixed distances from the nucleus based on the amount of energy they have. ... However, an electron could never exist in between two energy levels
<span>a) 7.9x10^9
b) 1.5x10^9
c) 3.9x10^4
To determine what percentage of an isotope remains after a given length of time, you can use the formula
p = 2^(-x)
where
p = percentage remaining
x = number of half lives expired.
The number of half lives expired is simply
x = t/h
where
x = number of half lives expired
t = time spent
h = length of half life.
So the overall formula becomes
p = 2^(-t/h)
And since we're starting with 1.1x10^10 atoms, we can simply multiply that by the percentage. So, the answers rounding to 2 significant figures are:
a) 1.1x10^10 * 2^(-5/10.5) = 1.1x10^10 * 0.718873349 = 7.9x10^9
b) 1.1x10^10 * 2^(-30/10.5) = 1.1x10^10 * 0.138011189 = 1.5x10^9
c) 1.1x10^10 * 2^(-190/10.5) = 1.1x10^10 * 3.57101x10^-6 = 3.9x10^4</span>
Is A have a nice day good luck b