Answer:
A) 37 m
Explanation:
The car is moving of uniformly accelerated motion, so the distance it covers can be calculated by using the following SUVAT equation:
(1)
where
v = 0 m/s is the final velocity of the car
u = 24 m/s is the initial velocity
a is the acceleration
d is the length of the skid
We need to find the acceleration first. We know that the force responsible for the (de)celeration is the force of friction, so:

where
m = 1000 kg is the mass of the car
is the coefficient of friction
a is the deceleration of the car
g = 9.8 m/s^2 is the acceleration due to gravity
The negative sign is due to the fact that the force of friction is against the motion of the car, so the sign of the acceleration will be negative because the car is slowing down. From this equation, we find:

And we can substitute it into eq.(1) to find d:

Answer:
Effective half-time of the tracer is 3.6 days
Explanation:
The formula for calculating the decay due to excretion for the first process is ;

here ;
= initial number of tracers
Then to the second process ; we have :

The total decay is as a result of the overall process occurring ; we have :
------ (1)
here ;

Putting the values in (1);we have :


As we also know that:
![\frac{1}{t_{1/2}} = \frac{[t_{1/2}]_{radiation}+[t_{1/2}]_{excretion}}{[t_{1/2}]_{radiation}*[t_{1/2}]_{excretion}}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7Bt_%7B1%2F2%7D%7D%20%3D%20%5Cfrac%7B%5Bt_%7B1%2F2%7D%5D_%7Bradiation%7D%2B%5Bt_%7B1%2F2%7D%5D_%7Bexcretion%7D%7D%7B%5Bt_%7B1%2F2%7D%5D_%7Bradiation%7D%2A%5Bt_%7B1%2F2%7D%5D_%7Bexcretion%7D%7D)
![\frac{1}{t_{1/2}}_{effective}} = \frac{[t_{1/2}]_{radiation}+[t_{1/2}]_{excretion}}{[t_{1/2}]_{radiation}*[t_{1/2}]_{excretion}}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7Bt_%7B1%2F2%7D%7D_%7Beffective%7D%7D%20%3D%20%5Cfrac%7B%5Bt_%7B1%2F2%7D%5D_%7Bradiation%7D%2B%5Bt_%7B1%2F2%7D%5D_%7Bexcretion%7D%7D%7B%5Bt_%7B1%2F2%7D%5D_%7Bradiation%7D%2A%5Bt_%7B1%2F2%7D%5D_%7Bexcretion%7D%7D)



= 3.6 days
Answer:

Explanation:
As we know that backpack is kicked on the rough floor with speed "v"
So here as per force equation in vertical direction we know that

so normal force on the block is given as

now the magnitude of kinetic friction on the block is given as


now when bag is sliding on the floor then net deceleration of the block due to friction is given as


now we know that bag hits the opposite wall at L distance away in time t
so we have



Answer:
spring constant of the spring is 1820.44 N/m
Explanation:
given data
ball mass = 4 kg
speed = 16 m/s
distance = 0.75 m
to find out
spring constant of the spring
solution
we know that kinetic energy of ball = energy store in spring as compression
so we can express it as
0.5 × m × v² = 0.5 × k × x² ....................1
so put here value we get spring constant k
m × v² = k × x²
4 × 16² = k × 0.75²
solve it we get
k = 1820.44 N/m
so spring constant of the spring is 1820.44 N/m