Answer:
electric potential, V = -q(a²- b²)/8π∈₀r³
Explanation:
Question (in proper order)
Consider two thin coaxial, coplanar, uniformly charged rings with radii a and b (b < a) and charges q and -q, respectively. Determine the potential at large distances from the rings
<em>consider the attached diagram below</em>
the electric potential at point p, distance r from the center of the outer charged ring with radius a is as given below
Va = q/4π∈₀ [1/(a² + b²)¹/²]

Also
the electric potential at point p, distance r from the center of the inner charged ring with radius b is

Sum of the potential at point p is
V = Va + Vb
that is


![V = \frac{q}{4\pi e0} * [\frac{1}{(a^{2} + r^{2} )^{1/2} } - \frac{1}{(b^{2} + r^{2} )^{1/2} }]](https://tex.z-dn.net/?f=V%20%3D%20%5Cfrac%7Bq%7D%7B4%5Cpi%20e0%7D%20%2A%20%5B%5Cfrac%7B1%7D%7B%28a%5E%7B2%7D%20%2B%20r%5E%7B2%7D%20%29%5E%7B1%2F2%7D%20%7D%20-%20%5Cfrac%7B1%7D%7B%28b%5E%7B2%7D%20%2B%20r%5E%7B2%7D%20%29%5E%7B1%2F2%7D%20%7D%5D)
the expression below can be written as the equivalent

likewise,

hence,
![V = \frac{q}{4\pi e0} * [\frac{1}{{r(1^{2} + \frac{a^{2} }{r^{2} } )}^{1/2} } - \frac{1}{{r(1^{2} + \frac{b^{2} }{r^{2} } )}^{1/2} }]](https://tex.z-dn.net/?f=V%20%3D%20%5Cfrac%7Bq%7D%7B4%5Cpi%20e0%7D%20%2A%20%5B%5Cfrac%7B1%7D%7B%7Br%281%5E%7B2%7D%20%2B%20%5Cfrac%7Ba%5E%7B2%7D%20%7D%7Br%5E%7B2%7D%20%7D%20%29%7D%5E%7B1%2F2%7D%20%7D%20-%20%5Cfrac%7B1%7D%7B%7Br%281%5E%7B2%7D%20%2B%20%5Cfrac%7Bb%5E%7B2%7D%20%7D%7Br%5E%7B2%7D%20%7D%20%29%7D%5E%7B1%2F2%7D%20%7D%5D)
1/r is common to both equation
hence, we have it out and joined to the 4π∈₀ denominator that is outside
![V = \frac{q}{4\pi e0 r} * [\frac{1}{{(1^{2} + \frac{a^{2} }{r^{2} } )}^{1/2} } - \frac{1}{{(1^{2} + \frac{b^{2} }{r^{2} } )}^{1/2} }]](https://tex.z-dn.net/?f=V%20%3D%20%5Cfrac%7Bq%7D%7B4%5Cpi%20e0%20r%7D%20%2A%20%5B%5Cfrac%7B1%7D%7B%7B%281%5E%7B2%7D%20%2B%20%5Cfrac%7Ba%5E%7B2%7D%20%7D%7Br%5E%7B2%7D%20%7D%20%29%7D%5E%7B1%2F2%7D%20%7D%20-%20%5Cfrac%7B1%7D%7B%7B%281%5E%7B2%7D%20%2B%20%5Cfrac%7Bb%5E%7B2%7D%20%7D%7Br%5E%7B2%7D%20%7D%20%29%7D%5E%7B1%2F2%7D%20%7D%5D)
by reciprocal rule
1/a² = a⁻²
![V = \frac{q}{4\pi e0 r} * [{(1^{2} + \frac{a^{2} }{r^{2} } )}^{-1/2} - {(1^{2} + \frac{b^{2} }{r^{2} } )}^{-1/2}]](https://tex.z-dn.net/?f=V%20%3D%20%5Cfrac%7Bq%7D%7B4%5Cpi%20e0%20r%7D%20%2A%20%5B%7B%281%5E%7B2%7D%20%2B%20%5Cfrac%7Ba%5E%7B2%7D%20%7D%7Br%5E%7B2%7D%20%7D%20%29%7D%5E%7B-1%2F2%7D%20-%20%7B%281%5E%7B2%7D%20%2B%20%5Cfrac%7Bb%5E%7B2%7D%20%7D%7Br%5E%7B2%7D%20%7D%20%29%7D%5E%7B-1%2F2%7D%5D)
by binomial expansion of fractional powers
where 
if we expand the expression we have the equivalent as shown

also,

the above equation becomes
![V = \frac{q}{4\pi e0 r} * [((1-\frac{a^{2} }{2r^{2} } ) - (1-\frac{b^{2} }{2r^{2} } )]](https://tex.z-dn.net/?f=V%20%3D%20%5Cfrac%7Bq%7D%7B4%5Cpi%20e0%20r%7D%20%2A%20%5B%28%281-%5Cfrac%7Ba%5E%7B2%7D%20%7D%7B2r%5E%7B2%7D%20%7D%20%29%20-%20%281-%5Cfrac%7Bb%5E%7B2%7D%20%7D%7B2r%5E%7B2%7D%20%7D%20%29%5D)
![V = \frac{q}{4\pi e0 r} * [1-\frac{a^{2} }{2r^{2} } - 1+\frac{b^{2} }{2r^{2} }]](https://tex.z-dn.net/?f=V%20%3D%20%5Cfrac%7Bq%7D%7B4%5Cpi%20e0%20r%7D%20%2A%20%5B1-%5Cfrac%7Ba%5E%7B2%7D%20%7D%7B2r%5E%7B2%7D%20%7D%20-%201%2B%5Cfrac%7Bb%5E%7B2%7D%20%7D%7B2r%5E%7B2%7D%20%7D%5D)
![V = \frac{q}{4\pi e0 r} * [-\frac{a^{2} }{2r^{2} } +\frac{b^{2} }{2r^{2} }]\\\\V = \frac{q}{4\pi e0 r} * [\frac{b^{2} }{2r^{2} } -\frac{a^{2} }{2r^{2} }]](https://tex.z-dn.net/?f=V%20%3D%20%5Cfrac%7Bq%7D%7B4%5Cpi%20e0%20r%7D%20%2A%20%5B-%5Cfrac%7Ba%5E%7B2%7D%20%7D%7B2r%5E%7B2%7D%20%7D%20%2B%5Cfrac%7Bb%5E%7B2%7D%20%7D%7B2r%5E%7B2%7D%20%7D%5D%5C%5C%5C%5CV%20%3D%20%5Cfrac%7Bq%7D%7B4%5Cpi%20e0%20r%7D%20%2A%20%5B%5Cfrac%7Bb%5E%7B2%7D%20%7D%7B2r%5E%7B2%7D%20%7D%20-%5Cfrac%7Ba%5E%7B2%7D%20%7D%7B2r%5E%7B2%7D%20%7D%5D)


Answer

OR
