Answer:
1) q=18414.93 W
2) C=12920$
Explanation:
Given data:
pipe length L=25m
pipe diameter D=100mm =0.1 m
air temperature
=
=25
°C.....= 298.15k
pipe surface temp
=150
°C.....=423.15k
surface emissivity e= 0.8
boiler efficiency η=0.90
natural gas price Cg=$0.02 per MJ
1) Total heat loss and radiation heat loss combined
q=
q=
б(
^4-
^4)]....... (1)
б=5.67×10^-8 W/m^2K^4 (boltzmann constant)
area A =L.Dπ=25×0.1π=7.85 m^2
putting all these values in eq (1)
q=18414.93 W
2) suppose boiler is operating non stop annual energy loss will be
E=q.t
=18414.93.3600.24.365
=5.81×10^11 J
to find furnace energy consumption
Ef =E/η
=6.46×10^5 MJ
annual cost
C=Cg. Ef
=12920$
Answer:
Cause and effect
Explanation:
In this text, the most suitable structure is a cause and effect structure. The text explains why the prices of economy cars rose substantially in the United States during the mid-1980s. The initial cause was import quotas, which led to the effect of the Japanese sending mostly luxury cars to America. This pattern is reproduced through the passage, allowing us to understand the connection between different sentences within a paragraph.
Answer:
B false it is illegal to only have got fog lights on though and bright headlights because it can distract other drivers going last and if the y are distracted then that will cause a collision
Hope this helps :)
Explanation:
Answer:
T1 = 299.18 °C
P2 = 0.00738443 MPa
Explanation:
From the data, we can get two properties for the initial condition. These are pressure and specific volume.
The pressure is 1.8 MPa and the specific volume, we can get it with the mass and volume of the container, since it’s filled this is also the volume of the water in it.

When we check in the thermodynamic tables, the conditions for saturation at 1.8 MPa we found the following:


specific volume for the saturated vapor
specific volume for the saturated liquid
Since the specific volume in our condition is higher that the specific volume for the saturated vapor, we have a superheated steam.
Looking in the thermodynamic tables for superheated steam we found that the temperature where the steam has a specific volume of
at 1.8 MPa is 299.18 °C. This is the initial temperature in the container.
Since the only information that we have about the final condition is that the container was cooled. We can assume that it was cooled until a condition of saturation. So, the final pressure for the water will be the pressure of saturation for a temperature of 40°C. From thermodynamic tables we get:

Answer:
See explaination
Explanation:
This is going to require diagrams, please kindly see attachment for the detailed step by step solution of the given problem.