Answer:
a) 0.3
b) 3.6 mm
Explanation:
Given
Length of the pads, l = 200 mm = 0.2 m
Width of the pads, b = 150 mm = 0.15 m
Thickness of the pads, t = 12 mm = 0.012 m
Force on the rubber, P = 15 kN
Shear modulus on the rubber, G = 830 GPa
The average shear strain can be gotten by
τ(average) = (P/2) / bl
τ(average) = (15/2) / (0.15 * 0.2)
τ(average) = 7.5 / 0.03
τ(average) = 250 kPa
γ(average) = τ(average) / G
γ(average) = 250 kPa / 830 kPa
γ(average) = 0.3
horizontal displacement,
δ = γ(average) * t
δ = 0.3 * 12
δ = 3.6 mm
Answer:
Mechanical average of a wheel = 3
Explanation:
Given:
Radius of wheel = 1.5 ft = 1.5 x 12 = 18 inches
Radius of axle = 6 inches
Find:
Mechanical average of a wheel
Computation:
Mechanical average of a wheel = Radius of wheel / Radius of axle
Mechanical average of a wheel = 18 / 6
Mechanical average of a wheel = 3
Given:
diameter of sphere, d = 6 inches
radius of sphere, r =
= 3 inches
density,
= 493 lbm/ 
S.G = 1.0027
g = 9.8 m/
= 386.22 inch/ 
Solution:
Using the formula for terminal velocity,
=
(1)

where,
V = volume of sphere
= drag coefficient
Now,
Surface area of sphere, A = 
Volume of sphere, V = 
Using the above formulae in eqn (1):
= 
=
= 
Therefore, terminal velcity is given by:
=
inch/sec
Answer:
Check the explanation
Explanation:
Kindly check the attached images below to see the step by step explanation to the question above.