1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mario62 [17]
3 years ago
6

A well-insulated tank in a vapor power plant operates at steady state. Saturated liquid water enters at inlet 1 at a rate of 125

lbm/s at 14.7 psia. Make-up water to replenish steam losses from the plant enters at inlet 2 at a rate of 10 lbm/s at 14.7 psia and 60o F. Water exits the tank at 14.7 psia. Neglect kinetic and potential energy effects, determine for the water exiting the the tank (a) the mass flow rate, in lb/s. (b) the specific enthalpy, in Btu/lb (c) the temperature, in F
Engineering
2 answers:
Gekata [30.6K]3 years ago
8 0

Answer:

a) \dot m_{3} = 135\,\frac{lbm}{s}, b) h_{3}=168.965\,\frac{BTU}{lbm}, c) T = 200.829\,^{\textdegree}F

Explanation:

a) The tank can be modelled by the Principle of Mass Conservation:

\dot m_{1} + \dot m_{2} - \dot m_{3} = 0

The mass flow rate exiting the tank is:

\dot m_{3} = \dot m_{1} + \dot m_{2}

\dot m_{3} = 125\,\frac{lbm}{s} + 10\,\frac{lbm}{s}

\dot m_{3} = 135\,\frac{lbm}{s}

b) An expression for the specific enthalpy at outlet is derived from the First Law of Thermodynamics:

\dot m_{1}\cdot h_{1} + \dot m_{2} \cdot h_{2} - \dot m_{3}\cdot h_{3} = 0

h_{3} = \frac{\dot m_{1}\cdot h_{1}+\dot m_{2}\cdot h_{2}}{\dot m_{3}}

Properties of water are obtained from tables:

h_{1}=180.16\,\frac{BTU}{lbm}

h_{2}=28.08\,\frac{BTU}{lbm} + \left(0.01604\,\frac{ft^{3}}{lbm}\right)\cdot (14.7\,psia-0.25638\,psia)

h_{2}=29.032\,\frac{BTU}{lbm}

The specific enthalpy at outlet is:

h_{3}=\frac{(125\,\frac{lbm}{s} )\cdot (180.16\,\frac{BTU}{lbm} )+(10\,\frac{lbm}{s} )\cdot (29.032\,\frac{BTU}{lbm} )}{135\,\frac{lbm}{s} }

h_{3}=168.965\,\frac{BTU}{lbm}

c) After a quick interpolation from data availables on water tables, the final temperature is:

T = 200.829\,^{\textdegree}F

babymother [125]3 years ago
7 0

Answer:

A

Explanation:I might not might be correct hmu if it is wrong im so sorry

You might be interested in
Choose the correct word or phrase to complete the sentence to explain human intervention in a machine system.
maksim [4K]

Answer:

Fully Automated

Periodic Maintenance Activities

6 0
3 years ago
The denominator of a fraction is 4 more than the numenator. If 4 is added to the numenator and 7 is added to the denominator, th
kati45 [8]

Answer:

\frac{3}{7}

Explanation:

Lets take the numerator of the fraction to be = x

So the denominator of the fraction is 4 more than the numerator = x+4

The fraction is ;\frac{x}{4+x}

Now add 4 to the numerator and add 7 to the denominator as;

\frac{x+4}{4+x+7} =\frac{x+4}{x+11}

This new fraction is equal to 1 half =1/2

write the equation as;

\frac{x+4}{x+11} =\frac{1}{2}

perform cross-product

2(x+4 )=1( x+11 )

2x+8 = x + 11

2x-x = 11-8

x=3

The original fraction is;  

\frac{x}{4+x} =\frac{3}{3+4} =\frac{3}{7}

3 0
3 years ago
Find the remaining trigonometric functions of 0 if
garik1379 [7]

Answer:

cosΘ=−√558

tanΘ=−3√5555

cscΘ=83

secΘ=−8√5555

cotΘ=−√553

8 0
3 years ago
Un material determinado tiene un espesor de 30 cm y una conductividad térmica (K) de 0,04 w/m°C. En un instante dado la distribu
aksik [14]

Answer:

Para x=0:

\phi=1.2 W/m^{2}  

Para x=30 cm:

\phi=-2.4 W/m^{2}  

Explanation

Podemos utilizar la ley de Fourier par determinar el flujo de calor:

\phi=-k\frac{dT}{dx}(1)

Por lo tanto debemos encontrar la derivada de T(x) con respecto a x primero.

Usando la ley de potencia para la derivda, tenemos:

\frac{dT(x)}{dx}=300x-30

Remplezando esta derivada en (1):

\phi=-0.04(300x-30)

Para x=0:

\phi=0.04(30)

\phi=1.2 W/m^{2}  

Para x=30 cm:

\phi=-0.04(300*0.3-30)

\phi=-2.4 W/m^{2}    

Espero que te haya ayudado!

4 0
3 years ago
Modify the Rainfall Statistics program you wrote for Programming Challenge 2 of Chapter 7 . The program should display a list of
rjkz [21]

Answer:

#include<iostream>

#include <iomanip>

using namespace std;

const int NUM_MONTHS = 12;

double getTotal(double [], int);

double getAverage(double [], int);

double getLargest(double [], int, int &);

double getSmallest(double [], int, int &);

double getTotal(int rainFall,double NUM_MONTHS[])

{

double total = 0;

for (int count = 0; count < NUM_MONTH; count++)

total += NUM_MONTH[count];

return total;

}

double getAverage(int rainFall,double NUM_MONTH[])

{getTotal(rainFall,NUM_MONTH)

average= total/NUM_MONTHS;

return average;

}

double getHighest(int rainFall, double NUM_MONTHS[]) //I left out the subScript peice as I was not sure how to procede with that;

{

double largest;

largest = NUM_MONTHS[0];

for ( int month = 1; month <= NUM_MONTHS; month++ ){

                     if ( values[month] > largest ){

                 largest = values[month];

return largest;

          }

double getSmallest(int rainFall, double NUM_MONTHS[])

{

double smallest;

smallest = NUM_MONTHS[0];

for ( int month = 1; month <= NUM_MONTHS; month){

                     if ( values[month] < smallest ){

                 smallest = values[month];

return smallest;

          }

 

int main()

{

double rainFall[NUM_MONTHS];

 for (int month = 0; month < NUM_MONTHS; month++)

  {

     cout << "Enter the rainfall (in inches) for month #";

     cout << (month + 1) << ": ";

     cin >> rainFall[month];

 

     while (rainFall[month] < 0)

     {

      cout << "Rainfall must be 0 or more.\n"

             << "Please re-enter: ";

      cin >> rainFall[month];

     }

  }

  cout << fixed << showpoint << setprecision(2) << endl;

  cout << "The total rainfall for the year is ";

  cout << getTotal(rainFall, NUM_MONTHS)

      << " inches." << endl;

   cout << "The average rainfall for the year is ";

  cout << getAverage(rainFall, NUM_MONTHS)

      << " inches." << endl;

   int subScript;

cout << "The largest amount of rainfall was ";

  cout << getLargest(rainFall, NUM_MONTHS, subScript)

      << " inches in month ";

  cout << (subScript + 1) << "." << endl;

  cout << "The smallest amount of rainfall was ";

  cout << getSmallest(rainFall, NUM_MONTHS, subScript)

      << " inches in month ";

  cout << (subScript + 1) << "." << endl << endl;

  return 0;

}

8 0
3 years ago
Other questions:
  • Who does the narrator blame for the loss of her job as editor-in-chief? <br> see if i care readworks
    8·2 answers
  • Remy noticed that after oiling his skateboard wheels, it was easier to reach the speeds he needed to perform tricks. How did the
    6·1 answer
  • As you discovered in lab last week, the advantage of CMOS logic is that no drain current flows through the MOSFETs when the outp
    14·1 answer
  • Harmony in music is characterized by _____.
    14·2 answers
  • Project 8:The Harris-Benedict equation estimates the number of calories your body needs to maintain your weight if you do no exe
    5·1 answer
  • Thermodynamics deals with the macroscopic properties of materials. Scientists can make quantitative predictions about these macr
    13·1 answer
  • Tony works as a Sorter in a processing factory. Which qualifications does he most likely have?
    10·2 answers
  • Think of an employee object. What are several of the possible states that the object may have over time?
    6·1 answer
  • The Imager for Mars Pathfinder (IMP) is an imaging system. It has two camera channels. Each channel has color capability. This i
    7·1 answer
  • There are three homes being built, each with an identical deck on the back. Each deck is comprised of two separate areas. One ar
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!