1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
oee [108]
3 years ago
11

¿Cómo nos podría ayudar una hoja de cálculo en nuestro estudio?

Engineering
1 answer:
Ghella [55]3 years ago
3 0

Las hojas de cálculo en Excel facilitan los cálculos numéricos a través del uso de fórmulas; de manera fácil y rápida se pueden hacer operaciones aritméticas sobre cientos de miles de datos numéricos; por lo que se puede actualizar o corregir cualquiera de los datos numéricos y las operaciones se recalculan

You might be interested in
The state of plane strain on an element is:
balu736 [363]

Answer:

a. ε₁=-0.000317

   ε₂=0.000017

θ₁= -13.28° and  θ₂=76.72°  

b. maximum in-plane shear strain =3.335 *10^-4

Associated average normal strain ε(avg) =150 *10^-6

θ = 31.71 or -58.29

Explanation:

\epsilon _{1,2} =\frac{\epsilon_x + \epsilon_y}{2}  \pm \sqrt{(\frac{\epsilon_x + \epsilon_y}{2} )^2 + (\frac{\gamma_xy}{2})^2} \\\\\epsilon _{1,2} =\frac{-300 \times 10^{-6} + 0}{2}  \pm \sqrt{(\frac{-300 \times 10^{-6}+ 0}{2}) ^2 + (\frac{150 \times 10^-6}{2})^2}\\\\\epsilon _{1,2} = -150 \times 10^{-6}  \pm 1.67 \times 10^{-4}

ε₁=-0.000317

ε₂=0.000017

To determine the orientation of ε₁ and ε₂

tan 2 \theta_p = \frac{\gamma_xy}{\epsilon_x - \epsilon_y} \\\\tan 2 \theta_p = \frac{150 \times 10^{-6}}{-300 \times 10^{-6}-\ 0}\\\\tan 2 \theta_p = -0.5

θ= -13.28° and  76.72°

To determine the direction of ε₁ and ε₂

\epsilon _{x' }=\frac{\epsilon_x + \epsilon_y}{2}  + \frac{\epsilon_x -\epsilon_y}{2} cos2\theta  + \frac{\gamma_xy}{2}sin2\theta \\\\\epsilon _{x'} =\frac{-300 \times 10^{-6}+ \ 0}{2}  + \frac{-300 \times 10^{-6} -\ 0}{2} cos(-26.56)  + \frac{150 \times 10^{-6}}{2}sin(-26.56)\\\\

=-0.000284 -0.0000335 = -0.000317 =ε₁

Therefore θ₁= -13.28° and  θ₂=76.72°  

b. maximum in-plane shear strain

\gamma_{max \ in \ plane} =2\sqrt{(\frac{\epsilon_x + \epsilon_y}{2} )^2 + (\frac{\gamma_xy}{2})^2} \\\\\gamma_{max \ in \ plane} = 2\sqrt{(\frac{-300 *10^{-6} + 0}{2} )^2 + (\frac{150 *10^{-6}}{2})^2}

=3.335 *10^-4

\epsilon_{avg} =(\frac{\epsilon_x + \epsilon_y}{2} )

ε(avg) =150 *10^-6

orientation of γmax

tan 2 \theta_s = \frac{-(\epsilon_x - \epsilon_y)}{\gamma_xy} \\\\tan 2 \theta_s = \frac{-(-300*10^{-6} - 0)}{150*10^{-6}}

θ = 31.71 or -58.29

To determine the direction of γmax

\gamma _{x'y' }=  - \frac{\epsilon_x -\epsilon_y}{2} sin2\theta  + \frac{\gamma_xy}{2}cos2\theta \\\\\gamma _{x'y' }=  - \frac{-300*10^{-6} - \ 0}{2} sin(63.42)  + \frac{150*10^{-6}}{2}cos(63.42)

= 1.67 *10^-4

4 0
3 years ago
Water flows steadily through the pipe as shown below, such that the pressure at section (1) and at section (2) are 300 kPa and 1
steposvetlana [31]

Answer:

The velocity at section is approximately 42.2 m/s

Explanation:

For the water flowing through the pipe, we have;

The pressure at section (1), P₁ = 300 kPa

The pressure at section (2), P₂ = 100 kPa

The diameter at section (1), D₁ = 0.1 m

The height of section (1) above section (2), D₂ = 50 m

The velocity at section (1), v₁ = 20 m/s

Let 'v₂' represent the velocity at section (2)

According to Bernoulli's equation, we have;

z_1 + \dfrac{P_1}{\rho \cdot g} + \dfrac{v^2_1}{2 \cdot g} = z_2 + \dfrac{P_2}{\rho \cdot g} + \dfrac{v^2_2}{2 \cdot g}

Where;

ρ = The density of water = 997 kg/m³

g = The acceleration due to gravity = 9.8 m/s²

z₁ = 50 m

z₂ = The reference = 0 m

By plugging in the values, we have;

50 \, m + \dfrac{300 \ kPa}{997 \, kg/m^3 \times 9.8 \, m/s^2} + \dfrac{(20 \, m/s)^2}{2 \times 9.8 \, m/s^2} = \dfrac{100 \ kPa}{997 \, kg/m^3 \times 9.8 \, m/s^2} + \dfrac{v_2^2}{2 \times 9.8 \, m/s^2}50 m + 30.704358 m + 20.4081633 m = 10.234786 m + \dfrac{v_2^2}{2 \times 9.8 \, m/s^2}

50 m + 30.704358 m + 20.4081633 m - 10.234786 m = \dfrac{v_2^2}{2 \times 9.8 \, m/s^2}

90.8777353 m = \dfrac{v_2^2}{2 \times 9.8 \, m/s^2}

v₂² = 2 × 9.8 m/s² × 90.8777353 m

v₂² = 1,781.20361 m²/s²

v₂ = √(1,781.20361 m²/s²) ≈ 42.204308 m/s

The velocity at section (2), v₂ ≈ 42.2 m/s

3 0
2 years ago
For which of 'water' flow velocities at 200C can we assume that the flow is incompressible ? a.1000 km per hour b. 500 km per ho
ad-work [718]

Answer:d

Explanation:

Given

Temperature=200^{\circ}\approc 473 K

Also \gamma for air=1.4

R=287 J/kg

Flow will be In-compressible when Mach no.<0.32

Mach no.=\frac{V}{\sqrt{\gamma RT}}

(a)1000 km/h\approx 277.78 m/s

Mach no.=\frac{277.78}{\sqrt{1.4\times 287\times 473}}

Mach no.=0.63

(b)500 km/h\approx 138.89 m/s

Mach no.=\frac{138.89}{\sqrt{1.4\times 287\times 473}}

Mach no.=0.31

(c)2000 km/h\approx 555.55 m/s

Mach no.=\frac{555.55}{\sqrt{1.4\times 287\times 473}}

Mach no.=1.27

(d)200 km/h\approx 55.55 m/s

Mach no.=\frac{55.55}{\sqrt{1.4\times 287\times 473}}

Mach no.=0.127

From above results it is clear that for Flow at velocity 200 km/h ,it will be incompressible.

5 0
3 years ago
A converging-diverging nozzle has an area ratio of 5.9. (1) Determine the (P0/Pt) values corresponding to the 1st, 2nd, and 3rd
nata0808 [166]

Answer:

Check the explanation

Explanation:

The Total pressure is the overall of fixed or static pressure p, the dynamic pressure q, as well as gravitational head. Total pressure can also be referred to as the measure of the overall energy of the airstream, and is the same to static pressure plus velocity pressure.

kindly check the step by step solution in the attached image below to Determine the (P0/Pt) values corresponding to the 1st, 2nd, and 3rd critical points.

5 0
3 years ago
List two ways you can make an informal survey
solniwko [45]

The two ways you can use to make an informal survey are:

  • make field observations
  • interview people using informal unstructured techniques

<h3>What are informal surveys?</h3>

In informal surveys can be regarded as a type of survey that can be made by the researcher by going to the field themselves and this can be done by using different methods or ways.

For instance, the researcher can go out to interview people that can give the data that is needed about the research such as informally asking them questions,  unstructured techniques can also be used to solve critical issues.

learn more about survey at: brainly.com/question/6947486

#SPJ9

8 0
2 years ago
Read 2 more answers
Other questions:
  • Can the United States defeat Iranian forces
    9·2 answers
  • The flatbed truck carries a large section of circular pipe secured only by the two fixed blocks A and B of height h. The truck i
    14·2 answers
  • Its an opinion!!!!
    8·1 answer
  • Consider a regenerative gas-turbine power plant with two stages of compression and two stages of expansion. The overall pressure
    11·1 answer
  • The penalty for littering 15 lb or less is _____.<br> A. $25<br> B. $50<br> C. $100<br> D. $150
    14·1 answer
  • Define and discuss the difference between micronutrients and macronutrients. Also, discuss their importance in the body at rest
    14·1 answer
  • WHAT IS THE EFFECT OF ICE ACCRETION ON THE LONGITUDINAL STABILITY OF AN AIRCRAFT?
    8·1 answer
  • The branding, packaging, and labeling of your product should accomplish all of the following except
    12·1 answer
  • Label each of the line types in the drawing below. ( will not mark you brainlest or whatever if you don't at least try to help)
    11·1 answer
  • Conduct online research and write a short report on the origin and evolution of the meter as a measurement standard. Discuss how
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!