Answer:
P = 15a + 8b
Step-by-step explanation:
Profit is 15 on each of the 'a' units of A, and is 8 on each of the 'b' units of B. Hence the total profit (P) is ...
P = 15a +8b
If your objective is to maximize profit, the objective function is ...
P = 15a +8b
I'm sorry, what is the question here?
The line of best fit is a straight line that can be used to predict the
average daily attendance for a given admission cost.
Correct responses:
- The equation of best fit is;

- The correlation coefficient is; r ≈<u> -0.969</u>
<h3>Methods by which the line of best fit is found</h3>
The given data is presented in the following tabular format;
![\begin{tabular}{|c|c|c|c|c|c|c|c|c|}Cost, (dollars), x&20&21&22&24&25&27&28&30\\Daily attendance, y&940&935&940&925&920&905&910&890\end{array}\right]](https://tex.z-dn.net/?f=%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7Cc%7Cc%7Cc%7Cc%7Cc%7C%7DCost%2C%20%28dollars%29%2C%20x%2620%2621%2622%2624%2625%2627%2628%2630%5C%5CDaily%20attendance%2C%20y%26940%26935%26940%26925%26920%26905%26910%26890%5Cend%7Barray%7D%5Cright%5D)
The equation of the line of best fit is given by the regression line
equation as follows;
Where;
= Predicted value of the<em> i</em>th observation
b₀ = Estimated regression equation intercept
b₁ = The estimate of the slope regression equation
= The <em>i</em>th observed value

= 24.625
= 960.625

Therefore;

Therefore;
- The slope given to the nearest tenth is b₁ ≈ -4.9

By using MS Excel, we have;
n = 8
∑X = 197
∑Y = 7365
∑X² = 4939
∑Y² = 6782675
∑X·Y = 180930
(∑X)² = 38809
Therefore;

- The y-intercept given to the nearest tenth is b₀ ≈ 1,042
The equation of the line of best fit is therefore;
The correlation coefficient is given by the formula;

Where;


Which gives;

The correlation coefficient given to the nearest thousandth is therefore;
- <u>Correlation coefficient, r ≈ -0.969</u>
Learn more about regression analysis here:
brainly.com/question/14279500
Answer:
x=12
Step by step explanation:
Answer:
9990 years
Step-by-step explanation:
The exponential function with given values filled in can be solved for the unknown using logarithms.
__
Q(t) = 12 = 36e^(-0.00011t)
1/3 = e^(-0.00011t) . . . . . . divide by 36
ln(1/3) = -0.00011t . . . . . . take natural logs
t = ln(1/3)/(-0.00011) . . . . divide by the coefficient of t
t ≈ 9990 . . . years