<h3>
<u>Explanation</u></h3>
- Given the system of equations.
![\begin{cases} y = - 4x \\ 23 - 5y = 44 \end{cases}](https://tex.z-dn.net/?f=%20%5Cbegin%7Bcases%7D%20y%20%3D%20%20-%204x%20%5C%5C%2023%20-%205y%20%3D%2044%20%5Cend%7Bcases%7D)
- Substitute y = -4x in the second equation.
![23 - 5( - 4x) = 44 \\ 23 + 20x = 44 \\ 20x = 44 - 23 \\ 20x = 21 \\ x = \frac{21}{20}](https://tex.z-dn.net/?f=23%20-%205%28%20-%204x%29%20%3D%2044%20%5C%5C%2023%20%2B%2020x%20%3D%2044%20%5C%5C%2020x%20%3D%2044%20-%2023%20%5C%5C%2020x%20%3D%2021%20%5C%5C%20x%20%3D%20%20%5Cfrac%7B21%7D%7B20%7D%20)
- Substitute the value of x in any given equations. I will substitute the value of x in the first equation.
![y = - 4x \Longrightarrow y = - 4( \frac{21}{20} ) \\ y = \cancel{ - 4}( \frac{21}{ \cancel{20}} ) \Longrightarrow y = - \frac{21}{5} \\ y = - \frac{21}{5}](https://tex.z-dn.net/?f=y%20%3D%20%20-%204x%20%5CLongrightarrow%20y%20%3D%20%20-%204%28%20%5Cfrac%7B21%7D%7B20%7D%20%29%20%5C%5C%20y%20%3D%20%20%20%5Ccancel%7B%20-%204%7D%28%20%5Cfrac%7B21%7D%7B%20%5Ccancel%7B20%7D%7D%20%29%20%5CLongrightarrow%20y%20%3D%20%20-%20%20%5Cfrac%7B21%7D%7B5%7D%20%20%5C%5C%20y%20%3D%20%20-%20%20%5Cfrac%7B21%7D%7B5%7D%20)
- Answer Check by substituting both values in two equations.
<u>First</u><u> </u><u>Equation</u>
![y = - 4x \Longrightarrow - \frac{21}{5} = - 4( \frac{21}{20} ) \\ - \frac{21}{5} = \cancel{ - 4}( \frac{21}{ \cancel{20}} ) \\ - \frac{21}{5} = - \frac{21}{5} \: \: \: \checkmark](https://tex.z-dn.net/?f=y%20%3D%20%20-%204x%20%5CLongrightarrow%20%20-%20%20%5Cfrac%7B21%7D%7B5%7D%20%20%3D%20%20-%204%28%20%5Cfrac%7B21%7D%7B20%7D%20%29%20%5C%5C%20%20-%20%20%5Cfrac%7B21%7D%7B5%7D%20%20%3D%20%20%20%5Ccancel%7B%20-%204%7D%28%20%5Cfrac%7B21%7D%7B%20%5Ccancel%7B20%7D%7D%20%29%20%5C%5C%20%20-%20%20%5Cfrac%7B21%7D%7B5%7D%20%20%3D%20%20-%20%20%5Cfrac%7B21%7D%7B5%7D%20%20%5C%3A%20%20%5C%3A%20%20%20%5C%3A%20%5Ccheckmark)
<u>Second</u><u> </u><u>Equation</u>
![23 - 5y = 44 \\ 23 - 5( - \frac{21}{5} ) = 44 \\23 - \cancel{5}( - \frac{21}{ \cancel{5}} ) = 44 \\ 23 + 21 = 44 \\ 44 = 44 \: \: \: \: \checkmark](https://tex.z-dn.net/?f=23%20-%205y%20%3D%2044%20%5C%5C%2023%20-%205%28%20-%20%20%5Cfrac%7B21%7D%7B5%7D%20%29%20%3D%2044%20%5C%5C23%20-%20%20%5Ccancel%7B5%7D%28%20-%20%20%5Cfrac%7B21%7D%7B%20%5Ccancel%7B5%7D%7D%20%29%20%3D%2044%20%5C%5C%2023%20%2B%2021%20%3D%2044%20%5C%5C%2044%20%3D%2044%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%20%5Ccheckmark)
Both equations are true for the value of x and value of y.
<h3>
<u>Answer</u></h3>
<u>
</u>
<u>Coordinate</u><u> </u><u>Point</u><u> </u><u>form</u>
<u>
</u>
An equation whose variables are polar coordinates is called a polar equation. These equation are characterized by an r as a function an angle. Polar equations can be written in rectangular coordinates by certain relationships. An example of a polar equation would be r = 2sin∅.
Answer:
troupe ta reponse too meme je ne confused pas mais churches tu va trouver ou tu voie les autres responses correct
Answer:
Step-by-step explanation:
d^2=(x2-x1)^2+(y2-y1)^2
d^2=(6-8)^2+(4+5)^2
d^2=4+81
d^2=85
d=(85)^(1/2)
d=9.22 (rounded to nearest hundredth)