(For a bit of context I will use the reaction between HCl and Mg as an example)
The larger the surface area of the magnesium metal, the more particles are exposed to collide with the aqueous HCl particles to cause the reaction to occur. This increases the frequency per second of collisions, speeding up the rate of reaction.
The effect of a catalyst is to reduce the minimum collision energy which allows the reaction to happen. This does not increase the number of collisions per second, but increases the percentage of successful collisions, which consequently causes the rate of reaction to increase .
I have drawn diagrams showing the effect of surface area, but there isn't really a meaningful diagram that I know of to show the impact of a catalyst (at least not at GCSE level).
Answer:
Family, Friends, and food?
Explanation:
sorry if its wrong, i did something like this last year, and this was my answer so sorry if its wrong TwT
Some elements can have to electrons and be stable in their shell they are stable in a duplet state instead of a octet state
Answer:
I believe the molecular formula is MnBr2·4H2O or Br2H8MnO4
Explanation:
The mass of carbon dioxide that would be produced will be 22 kg
<h3>Combustion of carbon</h3>
The combustion of carbon in air can be represented by the equation:
C + O2 ---> CO2
The mole ratio of C to O2 to CO2 is 1:1:1.
Mole of 6kg of carbon = mass/molar mass
= 6000/12
= 500 moles
Equivalent mole of CO2 produced = 500 moles
Mass of 500 moles CO2 = mole x molar mass
= 500 x 44.01
= 22,005 g or 22 kg approximately
More on combustion reactions can be found here: brainly.com/question/13649083