Answer:
i. Keq=4157.99.
ii. More hydrogen sulfide will be produced.
Explanation:
Hello,
i. In this case, for the concentrations at equilibrium on the given chemical reaction, the equilibrium constant results:
![Keq=\frac{[H_2S]^2}{[H_2]^2[S_2]} =\frac{(0.97M)^2}{(0.051M)^2(0.087)} =4157.99](https://tex.z-dn.net/?f=Keq%3D%5Cfrac%7B%5BH_2S%5D%5E2%7D%7B%5BH_2%5D%5E2%5BS_2%5D%7D%20%3D%5Cfrac%7B%280.97M%29%5E2%7D%7B%280.051M%29%5E2%280.087%29%7D%20%3D4157.99)
ii. Now, by means of the Le Chatelier's principle, the addition of a reactant shifts the reaction towards products, it means that more hydrogen sulfide will be produced in order to reach equilibrium.
Best regards.
In mineralogy and crystallography, a crystal structure<span>is a unique arrangement of atoms in a </span>crystal. Acrystal structure<span> is composed of a unit cell, a set of atoms arranged in a particular way; which is periodically repeated in three dimensions on a lattice.
Crystals create a harder more fitting structure so they tend to be a lot stronger than other compounds or elements</span>
Answer:
The number of carbon atoms in the container is 1.806 × 10²⁴ or the container contains 1.806 × 10²⁴ atoms of carbon
Explanation:
By Avogadro's number, 1 mole of a substance contains 6.02 × 10²³ particles of the substance
Here we have 0.45 mole of CO₂ contains
0.45 × 6.02 × 10²³ particles of CO₂ that is 2.709 × 10²³ particles of CO₂ or equivalent to 2.709 × 10²³ atoms of Carbon
Similarly, 2.55 moles of CaC₂ contains 2.55 × 6.02 × 10²³ particles of CaC₂ or 1.5351 × 10²⁴ atoms of Carbon
The total number of carbon atoms is therefore;
2.709 × 10²³ + 1.5351 × 10²⁴ = 1.806 × 10²⁴ atoms of carbon.
Relative dating is the process of determining whether an object or event is older or younger than other objects or events. Absolute dating is d<span>etermining the age of an event or object in years. From absolute dating, the real age of the object is obtained which is not present for relative dating. Hope this helps.</span>
Answer:
The concentration of chloride ion is 
Explanation:
We know that 1 ppm is equal to 1 mg/L.
So, the
content 100 ppm suggests the presence of 100 mg of
in 1 L of solution.
The molar mass of
is equal to the molar mass of Cl atom as the mass of the excess electron in
is negligible as compared to the mass of Cl atom.
So, the molar mass of
is 35.453 g/mol.
Number of moles = (Mass)/(Molar mass)
Hence, the number of moles (N) of
present in 100 mg (0.100 g) of
is calculated as shown below:

So, there is
of
present in 1 L of solution.