1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Marizza181 [45]
3 years ago
9

Select the graph that represents the solution of the compound inequality -6 < 4x + 6 < 14

Mathematics
2 answers:
pochemuha3 years ago
8 0

Answer:

Step-by-step explanation:

-6 < 4x + 6 < 14

-12 < 4x < 8

-3 < x < 2

Murrr4er [49]3 years ago
7 0

Answer:

The answer is D :)

Step-by-step explanation:

I took the test on edgenuity (2020) and got it correct, hope this helped!

You might be interested in
A twelve-sided die with sides labeled 1 through 12 will be rolled once. Each number is equally likely to be rolled.
kykrilka [37]

Answer:

1/6

..................

6 0
3 years ago
4. Andrés desea embaldosar el piso de su casa que tiene 375 cm de ancho y 435 cm de largo. Calcula la longitud del lado que tend
svetlana [45]

Answer:

Sabemos que el piso es un rectángulo de 435 cm de largo y 375 cm de ancho.

Recordar que para un rectángulo de largo L, y ancho W, el área es:

A = L*W

Entonces el área del piso, será:

A = 435cm*375cm = 163,125 cm^2

Primero, sabemos que se utilizaran baldosas (las cuales son cuadradas) y queremos saber la longitud de lado que tendrían las baldosas.

No tenemos ningún criterio para encontrar este lado, solo que (si queremos usar un número entero de baldosas) el largo L del lado de la baldosa deberá ser un divisor de tanto el ancho como el largo del suelo.

Dicho de otra forma

el largo, 435cm, tiene que ser múltiplo de L

el ancho, 375cm, tiene que ser múltiplo de L.

Por ejemplo, ambos números son múltiplos de 5, entonces podríamos tomar L = 5cm

En este caso, el área de cada baldosa es:

a = L^2 = 5cm*5cm = 25cm^2

Y el número total de baldosas que necesitaría usar esta dado por el cociente entre el área del suelo y el area de cada baldosa.

N = ( 163,125 cm^2)/(25cm^2) = 6,525 baldosas.

También sabemos que ambos números (435cm y 375cm) son múltiplos de 15cm

Entonces las baldosas podrían tener 15cm de lado.

En este caso, el área de cada baldosa es:

A = (15cm)^2 = 225cm

En este caso el número total de baldosas necesarias será:

N =  ( 163,125 cm^2)/(225cm^2) = 725 baldosas.

5 0
3 years ago
A customer buys 12.42 in merchandise and gives cashier a ten dollar bill a five dollar bill a dime a nickel and two pennies her
Arturiano [62]
She gets $2.75 back if that’s what you’re asking.
4 0
3 years ago
Translate this verbal expression to an algebraic expression.
puteri [66]
C. 2(x+10) is the correct answer
3 0
3 years ago
Read 2 more answers
Is a gcf of two even numbers always even
Elan Coil [88]
2,4,6,8,10,12,14,16,18,20 in up is even numbers.odd number is/3,5,7 in up
7 0
3 years ago
Other questions:
  • Patrick has a $1000 bond with 6% coupon. How much interest will Patrick receive for this bond every 6 months?
    6·2 answers
  • Maria's trattoria offers ham, green peppers, black olives, mushrooms, onions, and anchovies as toppings for the plain cheese bas
    5·1 answer
  • A gift package contains 6 wedges of cheese . If each wedges is 2/3 onuce what is the totel weight in pounds of cheese?
    14·1 answer
  • Considere o produto 2.2.2.2.2.2.Escreva-o como potência de base.<br> OBS:Não é de marcar...
    10·1 answer
  • Help me find the area of this hexagon.
    9·1 answer
  • Please help me I'm stuck​
    7·1 answer
  • Calculate the remaining values: de a y b​
    14·1 answer
  • Money market accounts of $800 earns 3.0% interest compounded quarterly what is the equation
    11·1 answer
  • List the first 5 multiples and find all the factors of 7 prime or composite
    12·1 answer
  • There are 1,023 M&amp;M's in a bag. Out of 1,023 M&amp;M's, 132 M&amp;M's are blue, 69 are green, 68 are brown, 63 are olive, 62
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!