Express the quotient of z1 and z2 in standard form given that
frac%7B-%5Cpi%20%7D%7B4%7D%20%29%2Bisin%28%5Cfrac%7B-%5Cpi%20%7D%7B4%7D%20%29%5D" id="TexFormula1" title="z_{1} = -3[cos(\frac{-\pi }{4} )+isin(\frac{-\pi }{4} )]" alt="z_{1} = -3[cos(\frac{-\pi }{4} )+isin(\frac{-\pi }{4} )]" align="absmiddle" class="latex-formula"> and
![z_{2} = 2\sqrt{2} [cos(\frac{-\pi }{2} )+isin(\frac{-\pi }{2} )]](https://tex.z-dn.net/?f=z_%7B2%7D%20%3D%202%5Csqrt%7B2%7D%20%5Bcos%28%5Cfrac%7B-%5Cpi%20%7D%7B2%7D%20%29%2Bisin%28%5Cfrac%7B-%5Cpi%20%7D%7B2%7D%20%29%5D)
1 answer:
Answer:
Solution : 
Step-by-step explanation:
![-3\left[\cos \left(\frac{-\pi }{4}\right)+i\sin \left(\frac{-\pi \:}{4}\right)\right]\:\div \:2\sqrt{2}\left[\cos \left(\frac{-\pi \:\:}{2}\right)+i\sin \left(\frac{-\pi \:\:\:}{2}\right)\right]](https://tex.z-dn.net/?f=-3%5Cleft%5B%5Ccos%20%5Cleft%28%5Cfrac%7B-%5Cpi%20%7D%7B4%7D%5Cright%29%2Bi%5Csin%20%5Cleft%28%5Cfrac%7B-%5Cpi%20%5C%3A%7D%7B4%7D%5Cright%29%5Cright%5D%5C%3A%5Cdiv%20%5C%3A2%5Csqrt%7B2%7D%5Cleft%5B%5Ccos%20%5Cleft%28%5Cfrac%7B-%5Cpi%20%5C%3A%5C%3A%7D%7B2%7D%5Cright%29%2Bi%5Csin%20%5Cleft%28%5Cfrac%7B-%5Cpi%20%5C%3A%5C%3A%5C%3A%7D%7B2%7D%5Cright%29%5Cright%5D)
Let's apply trivial identities here. We know that cos(-π / 4) = √2 / 2, sin(-π / 4) = - √2 / 2, cos(-π / 2) = 0, sin(-π / 2) = - 1. Let's substitute those values,

=
÷ 
=
÷ 
=
÷
=
÷
= 
As you can see your solution is the last option.
You might be interested in
Answer: 3.5
Step-by-step explanation:
Answer:
B.) √3/2
Step-by-step explanation:
Option (b) is your correct answer.
Step-by-step explanation:

Given Trigonometric expression is

So, on rationalizing the denominator, we get

We know,

So, using this, we get

We know,

So, using this identity, we get


<u>Hence, </u>

Answer: 15
Step by step explanation:
Eleven plus
t minus seventeen
ten multiplied by n
fifteen multiplied by y
four multiplied by x
a plus b
fourteen times x plus three times y