For which value(s) of the constant k is the circle x² + (y − k)² = 16 tangent to the line y = 3?
2 answers:
Answer:
-1, 7
Step-by-step explanation:
Equation of the circle:
x² + (y − k)² = 16
When the circle intersects y = 3:
x² + (3 − k)² = 16
x² + 9 − 6k + k² = 16
x² = 7 + 6k − k²
x = ±√(7 + 6k − k²)
For the circle to be tangent to the line, it can only intersect at one point. If x has only one value, then:
√(7 + 6k − k²) = -√(7 + 6k − k²)
2√(7 + 6k − k²) = 0
7 + 6k − k² = 0
k² − 6k − 7 = 0
(k − 7) (k + 1) = 0
k = -1, 7
The two values of k are -1 and 7.
<em>Answer:</em>
<em />
<em>Step-by-step explanation:Let us find points of intersection of line </em>
<em>3
</em>
<em>x
</em>
<em>+
</em>
<em>4
</em>
<em>y
</em>
<em>−
</em>
<em>k
</em>
<em>=
</em>
<em>0
</em>
<em> and circle </em>
<em>x
</em>
<em>2
</em>
<em>+
</em>
<em>y
</em>
<em>2
</em>
<em>=
</em>
<em>16
</em>
<em>. We can do this by putting value of </em>
<em>y
</em>
<em> from first equation i.e. </em>
<em>y
</em>
<em>=
</em>
<em>k
</em>
<em>−
</em>
<em>3
</em>
<em>x
</em>
<em>4
</em>
<em> and we get
</em>
<em>
</em>
<em>x
</em>
<em>2
</em>
<em>+
</em>
<em>(
</em>
<em>k
</em>
<em>−
</em>
<em>3
</em>
<em>x
</em>
<em>)
</em>
<em>2
</em>
<em>16
</em>
<em>=
</em>
<em>16
</em>
<em>
</em>
<em>or </em>
<em>16
</em>
<em>x
</em>
<em>2
</em>
<em>+
</em>
<em>k
</em>
<em>2
</em>
<em>+
</em>
<em>9
</em>
<em>x
</em>
<em>2
</em>
<em>−
</em>
<em>6
</em>
<em>k
</em>
<em>x
</em>
<em>=
</em>
<em>256
</em>
<em>
</em>
<em>i.e. </em>
<em>25
</em>
<em>x
</em>
<em>2
</em>
<em>−
</em>
<em>6
</em>
<em>k
</em>
<em>x
</em>
<em>+
</em>
<em>k
</em>
<em>2
</em>
<em>−
</em>
<em>256
</em>
<em>=
</em>
<em>0
</em>
<em>
</em>
<em>This would give two values of </em>
<em>x
</em>
<em> and corresponding two values of </em>
<em>y
</em>
<em> i.e. two points. But tangent cuts the circle in only at one point. This will be so when discriminant is zero i.e.
</em>
<em>
</em>
<em>(
</em>
<em>−
</em>
<em>6
</em>
<em>k
</em>
<em>)
</em>
<em>2
</em>
<em>−
</em>
<em>4
</em>
<em>⋅
</em>
<em>25
</em>
<em>⋅
</em>
<em>(
</em>
<em>k
</em>
<em>2
</em>
<em>−
</em>
<em>256
</em>
<em>)
</em>
<em>=
</em>
<em>0
</em>
<em>
</em>
<em>or </em>
<em>−
</em>
<em>64
</em>
<em>k
</em>
<em>2
</em>
<em>+
</em>
<em>25600
</em>
<em>=
</em>
<em>0
</em>
<em> or </em>
<em>k
</em>
<em>=
</em>
<em>±
</em>
<em>20
</em>
<em>
</em>
<em>graph{(x^2+y^2-16)(3x+4y-20)(3x+4y+20)=0 [-10, 10, -5, 5]}</em>
You might be interested in
Meme right if so i got one!!
It’s 19 so the answer would be B
x^2 - 19 - (17 - x).
<em><u>Distribute -1 to each term of g(x).</u></em>
x^2 - 19 - 17 + x.
<em><u>Replace x with 5.</u></em>
5^2 - 18 - 17 + 5
25 - 18 - 17 + 4
<em><u>Simplify.</u></em>
-6 is your answer.
The answer is 12x because just add the three numbers and plug in x at the end of the answer
Answer:
h(-3) = 4.2 or 21/5
h(1) = 0.2 or 1/5
Step-by-step explanation:
Plug in -3 for t.
-(-3) + 6/5 = 4.2 or 21/5
Plug in 1 for t.
-(1) + 6/5 = 0.2 or 1/5