<span>150 degrees.
Let's assume the center camera is pointed to at an angle of 0 degrees. Since it has a coverage of 60 degrees, then it will cover the angles from -30 to +30 degrees. Now we'll continue to use the +/- 30 degree coverage for the other two cameras. The second camera is aimed at 45 degrees, so it's range of coverage is 15 degrees to 75 degrees (45 +/- 30). Notice that the range from 15 degrees to 30 degrees is covered by 2 cameras. Now the 3rd camera is pointed at -45 degrees, so its coverage is from -15 degrees to -75 degrees. It also has an overlap with the 1st camera from -15 to -30 degrees.
The total coverage of all three cameras ranges from -75 degrees to 75 degrees. That means that an arc of 150 degrees in total is covered by all three cameras.</span>
Since the order matters, it's a permutation of 7 letters, but mind you in
MOROCCO. you have 3 O's and 2 C's, Hence the arrangements are:
⁷P₇ /(3!2!) = 7!/(3!2!) = 5040/(3!2!) = 420 arrangements
Answer:
6x²y(9 - 2y)
Step-by-step explanation:
Step 1: Factor out GCF
6(9x²y - 2x²y²)
Step 2: Factor out <em>x²</em>
6x²(9y - 2y²)
Step 3: Factor out <em>y</em>
6x²y(9 - 2y)
And we have our factored answer.
Um it is the third brainiest please
Answer:
Learning to subtract rational numbers by adding the additive inverse can be explained to your child as being the same as finding the opposite. This can even be described to your child as being a similar concept to one that they have worked with in the past where subtraction is the opposite of addition.
Additive inverse can be defined as adding a number with the opposite or the negative of that number to equal zero. The additive inverse of 1 is (-1), the additive inverse of 2 is (-2) and so on.
Example: 5 + (-5) = 0
In this example, (-5) is the additive inverse.
You can then take additive inverse one step when finding the additive inverse when subtracting rational numbers.
Example: 7 - 4 = 7 + (-4)
3 = 3
When finding the inverse, it is important to keep in mind that what you do to one side, you must do the opposite to another. In the example above, because you subtracted a positive four on one side, you are going to add a negative four to the other. This will make the equation equal on both sides.
Step-by-step explanation: