For a rational number to have a terminating decimal expansion
q should be in the form 5^m and 2^n or both. If q is not in the form of either then it is a non terminating recurring decimal expansion
<span>Minimum wykresu funkcji kwadratowej znajduje się w ( -1, 2). Punkt ( 2 , 20) jest również od paraboli. Która funkcja reprezentuje sytuację?
</span><span>Canonical form of the function
</span>f(x) = a* (x - p)² + q
A .f(x) = (x + 1)² + 2 ⇔ p= -1 , q = 2
B. f(x) = (x – 1)² + 2 we reject
C. f(x) = 2(x + 1)² + 2 ⇔ p = -1 , q = 2
D .f(x) = 2(x – 1)² + 2 we reject
The point (2,20) substitute
A f(x) = (x +1)² + 2
20 = (2 + 1 )² + 2
20 ≠ 9 +2
20 ≠ 11 we reject
D f(x) = 2* (x + 1)² + 2
20 = 2* (2+1)² + 2
20 = 2 * 3² + 2
20 = 2 * 9 + 2
20 = 18 + 2
Reply C
Answer:
37
Step-by-step explanation:
1/10 i believe... i hope it helps
Answer: Zero slope.
Step-by-step explanation:
There is no " Rise over run "