Answer:

Step-by-step explanation:
![\huge \sqrt[3]{9 {x}^{4} } . \sqrt[3]{3 {x}^{8} } \\ \\ \huge = \sqrt[3]{9 {x}^{4} \times 3 {x}^{8} } \\ \\\huge = \sqrt[3]{27 {x}^{12} } \\ \\ \huge\orange{= 3 {x}^{4} }](https://tex.z-dn.net/?f=%5Chuge%20%5Csqrt%5B3%5D%7B9%20%7Bx%7D%5E%7B4%7D%20%7D%20.%20%20%5Csqrt%5B3%5D%7B3%20%7Bx%7D%5E%7B8%7D%20%7D%20%20%5C%5C%20%20%5C%5C%20%5Chuge%20%3D%20%20%5Csqrt%5B3%5D%7B9%20%7Bx%7D%5E%7B4%7D%20%5Ctimes%203%20%7Bx%7D%5E%7B8%7D%20%20%7D%20%20%5C%5C%20%20%5C%5C%5Chuge%20%20%3D%20%20%5Csqrt%5B3%5D%7B27%20%7Bx%7D%5E%7B12%7D%20%20%7D%20%20%5C%5C%20%20%5C%5C%20%20%5Chuge%5Corange%7B%3D%203%20%7Bx%7D%5E%7B4%7D%20%7D)
This is a system of equations problem:
Part one set up general equations
1) Peanuts = 3x ($3 per pound)
2) Jellybean = 1.5y ($1.50 per pound)
Relate x and y to the information you have
He wants 30lb. total: x + y = 30
He also wants the mixture to be valued at $2.50 per pound = 3x + 1.5y = 30(2.5)
*I'm taking $2.50 times 30 because you want the total cost to equal since he wants $2.50 per pound.
You want to substitute one equation into the other.
x + y = 30
3x + 1.5y = 75
1) x + y = 30 => x = 30 - y
2) 3(30 - y) + 1.5y = 75
3) 90 - 3y + 1.5y = 75
4) -1.5y = -15
5) y = 10lb.
Then plug that into one of the original equations to get x.
6) x+ y = 30 => 10 + x = 30 => x = 20lb.
He wants 20lb. of peanuts and 10lb. of jellybeans
Answer:
13/100
Step-by-step explanation:
Answer:
C = -6
Step-by-step explanation:
C = [2×1/4 + 1] ÷ [3×1/4 -1 ]
C = 3/2 ÷ -1/4
C = 3/2 × -4 = -6
C = 2d + 1 / 3d - 1
So, d = ( C + 1 ) / ( 3C - 2 )
Answer: check the photo
Step-by-step explanation: im taking the test rn