<em>Answer</em><em>:</em>
<em>Glycolysis</em>
<em>E</em><em>xplanation</em><em> </em><em>:</em>
Glycolysis is the first step in the breakdown of glucose to extract energy for cell metabolism.Many living organisms carry out glycolysis as part of their metabolism. Glycolysis takes place in the cytoplasm of most prokaryotic and all eukaryotic cells.
It has more lines in it compared to hydrogen emission spectrum. It is mainly because the helium atom has more electrons than a hydrogen atom. Therefore, more electrons get excited when we pass a white light beam through a helium sample, and it causes the emission of more spectral lines
Answer:
B = (2.953 × 10⁻⁹⁵) N.m⁹
Explanation:
At equilibrium, where the distance between the two ions (ro) is the sum of their ionic radii, the force between the two ions is zero.
That is,
Fa + Fr = 0
Fa = - Fr
Fa = (|q₁q₂|)/(4πε₀r²)
Fr = -B/(r^n) but n = 9
Fr = -B/r⁹
(|q₁q₂|)/(4πε₀r²) = (B/r⁹)
|q₁| = |q₂| = (1.6 × 10⁻¹⁹) C
(1/4πε₀) = k = (8.99 × 10⁹) Nm²/C²
r = 0.097 + 0.181 = 0.278 nm = (2.78 × 10⁻¹⁰) m
(k|q₁q₂|)/(r²) = (B/r⁹)
(k × |q₁q₂|) = (B/r⁷)
B = (k × |q₁q₂| × r⁷)
B = [8.99 × 10⁹ × 1.6 × 10⁻¹⁹ × 1.6 × 10⁻¹⁹ × (2.78 × 10⁻¹⁰)⁷]
B = (2.953 × 10⁻⁹⁵) N.m⁹
Answer:
The nuclear charge increases, but the number of inner shielding electrons stays the same.
Explanation:
Their shielding does not change, so the effective nuclear charge — the charge felt by a valence electron — increases.
The valence electrons are pulled closer to the nucleus, decreasing the atomic radius.
For example, consider the elements of Period 3.

The number of protons increases as you go from one element to the next, but the number of inner electrons is constant.