Explanation:
a particle smaller than an atom (e.g., a neutron) or a cluster of such particles (e.g., an alpha particle).
Answer:
Final mass = 159.5 g
Final temperature = 10 C
Final density = 1.00 g/ml
Explanation:
<u>Given:</u>
Beaker 1:
Mass of water = 44.3 g
Temperature = 10 C
Beaker 2:
Mass of water = 115.2 g
Temperature = 10 C
Density of water at 10C = 1.00 g/ml
<u>To determine:</u>
The final mass, temperature and density of water
<u>Calculation:</u>

Since there is no change in temperature, the final temperature will be 10 C
Density of a substance is an intensive property i.e. it is independent of the mass. Hence the density of water will remain constant i.e. 1.00 g/ml
The correct answer is B. Platinum is the transition element among the choices. The elements belonging to this group are those having a partially filled d or f subshell. It usually refers to the d-block transition elements of the periodic table.
Answer:
Pressure for H₂ = 11.9 atm
Option 5.
Explanation:
We determine the complete reaction:
2Al(s) + 6HCl(aq) → 2AlCl₃(aq) + 3H₂(g)
As we do not know anything about the HCl, we assume that the limiting reactant is the Al and the acid is the excess reagent.
Ratio is 2:3.
2 moles of Al, can produce 3 moles of hydrogen
Therefore 4.5 moles of Al must produce (4.5 . 3) / 2 = 6.75 moles
Now we can apply the Ideal Gases law to find the H₂'s pressure
P . V = n . R . T → P = (n . R .T) / V
We replace data: (6.75 mol . 0.082L.atm/mol.K . 300K) / 14L
Pressure for H₂ = 11.9 atm
Answer:
Carbohydrates provide energy to organisms.
Explanation:
Im 100% sure because Carbohydrates can also be defined chemically as neutral compounds of carbon, hydrogen and oxygen. Carbohydrates come in simple forms such as sugars and in complex forms such as starches and fiber. The body breaks down most sugars and starches into glucose, a simple sugar that the body can use to feed its cells