Answer:
t+m=2.10 -----------equation 1
2t+3m=5.15----------equation 2
Comment on my answer if you want me to show you how to use them to solve. but what I gave above is what the question asked
Step-by-step explanation:
Answer: 0.444
Step-by-step explanation:
1.5 - 1.056 = 0.444
(2,1) is the solution because its where they both intersect..
B. because jk and cb are on the same spot
To solve this we are going to use the future value of annuity due formula:
![FV=(1+ \frac{r}{n} )*P[ \frac{(1+ \frac{r}{n})^{kt}-1 }{ \frac{r}{n} } ]](https://tex.z-dn.net/?f=FV%3D%281%2B%20%5Cfrac%7Br%7D%7Bn%7D%20%29%2AP%5B%20%5Cfrac%7B%281%2B%20%5Cfrac%7Br%7D%7Bn%7D%29%5E%7Bkt%7D-1%20%7D%7B%20%5Cfrac%7Br%7D%7Bn%7D%20%7D%20%5D)
where

is the future value

is the periodic deposit

is the interest rate in decimal form

is the number of times the interest is compounded per year

is the number of deposits per year
We know for our problem that

and

. To convert the interest rate to decimal form, we are going to divide the rate by 100%:

. Since Ruben makes the deposits every 6 months,

. The interest is compounded semiannually, so 2 times per year; therefore,

.
Lets replace the values in our formula:
![FV=(1+ \frac{r}{n} )*P[ \frac{(1+ \frac{r}{n})^{kt}-1 }{ \frac{r}{n} } ]](https://tex.z-dn.net/?f=FV%3D%281%2B%20%5Cfrac%7Br%7D%7Bn%7D%20%29%2AP%5B%20%5Cfrac%7B%281%2B%20%5Cfrac%7Br%7D%7Bn%7D%29%5E%7Bkt%7D-1%20%7D%7B%20%5Cfrac%7Br%7D%7Bn%7D%20%7D%20%5D)
![FV=(1+ \frac{0.1}{2} )*420[ \frac{(1+ \frac{0.1}{2})^{(2)(15)}-1 }{ \frac{01}{2} } ]](https://tex.z-dn.net/?f=FV%3D%281%2B%20%5Cfrac%7B0.1%7D%7B2%7D%20%29%2A420%5B%20%5Cfrac%7B%281%2B%20%5Cfrac%7B0.1%7D%7B2%7D%29%5E%7B%282%29%2815%29%7D-1%20%7D%7B%20%5Cfrac%7B01%7D%7B2%7D%20%7D%20%5D)
We can conclude that the correct answer is <span>
$29,299.53</span>