Answer:
displacement at 45 s = 30
65 s = 50
So the average speed over the interval from 45 s to 65 s is
(50 - 30) cm / 20 s = 1 cm / sec
As a check an average speed of 1 cm / sec for 20 sec will produce a
displacement of 1 cm / sec * 20 sec = 20 cm or from 30 to 50 cm
To solve this problem it is necessary to apply the equations related to the conservation of momentum.
This definition can be expressed as

Where
= Mass of each object
= Initial Velocity of each object
= Final velocity
Rearranging the equation to find the final velocity we have,

Our values are given as

Replacing we have,


Therefore the final velocity is 6.5m/s
Answer:
The distance is
=
7
m
Explanation:
Apply the equation of motion
s
(
t
)
=
u
t
+
1
2
a
t
2
The initial velocity is
u
=
0
m
s
−
1
The acceleration is
a
=
2
m
s
−
2
Therefore, when
t
=
3
s
, we get
s
(
3
)
=
0
+
1
2
⋅
2
⋅
3
2
=
9
m
and when
t
=
4
s
s
(
4
)
=
0
+
1
2
⋅
2
⋅
4
2
=
16
m
Therefore,
The distance travelled in the fourth second is
d
=
s
(
4
)
−
s
(
3
)
=
16
−
9
=
7
m
Answer:
The level of the root beer is dropping at a rate of 0.08603 cm/s.
Explanation:
The volume of the cone is :

Where, V is the volume of the cone
r is the radius of the cone
h is the height of the cone
The ratio of the radius and the height remains constant in overall the cone.
Thus, given that, r = d / 2 = 10 / 2 cm = 5 cm
h = 13 cm
r / h = 5 / 13
r = {5 / 13} h


Also differentiating the expression of volume w.r.t. time as:

Given:
= -4 cm³/sec (negative sign to show leaving)
h = 10 cm
So,



<u>The level of the root beer is dropping at a rate of 0.08603 cm/s.</u>
When someone stands against a locker and is does not moving at all, then there will be no displacement and since displacement = 0
Work done also becomes equal to zero.
Work done is usually defined as change in energy. Since the work done is zero there has been no energy used.