Answer:
not true because the mass from the heavy car will cause it to damage more
Explanation:
The air pressure in the pressurized tank will be 24014.88 N/m²,196.2 N/m²,2084.625 N/m².
<h3 /><h3>What is pressure?</h3>
The force applied perpendicular to the surface of an item per unit area across which that force is spread is known as pressure.
It is denoted by P. The pressure relative to the ambient pressure is known as gauge pressure.
Pressure is found as the product of the density,acceleraton due to gravity and the height.
P₁=ρ₁gh₁
P₁=13,600 kg/m³×9.81 (m/s²)×0.18 m
P₁=24014.88 N/m²
P₂=ρ₂gh₂
P₂= 1000 kg/m³×9.81 (m/s²)×00.2 m
P₂=196.2 N/m²
P₃=ρ₃gh₃
P₃=850 kg/m³×9.81 (m/s²)×0.25
P₃=2084.625 N/m²
Hence,the air pressure in the pressurized tank will be 24014.88 N/m²,196.2 N/m²,2084.625 N/m².
To learn more about the pressure refer to the link;
brainly.com/question/356585
#SPJ4
Answer:
v = 120 m/s
Explanation:
We are given;
earth's radius; r = 6.37 × 10^(6) m
Angular speed; ω = 2π/(24 × 3600) = 7.27 × 10^(-5) rad/s
Now, we want to find the speed of a point on the earth's surface located at 3/4 of the length of the arc between the equator and the pole, measured from equator.
The angle will be;
θ = ¾ × 90
θ = 67.5
¾ is multiplied by 90° because the angular distance from the pole is 90 degrees.
The speed of a point on the earth's surface located at 3/4 of the length of the arc between the equator and the pole, measured from equator will be:
v = r(cos θ) × ω
v = 6.37 × 10^(6) × cos 67.5 × 7.27 × 10^(-5)
v = 117.22 m/s
Approximation to 2 sig. figures gives;
v = 120 m/s