The number converted is 
Explanation:
In order to convert from the original units to the final units, we have to keep in mind the following conversion factors:



The original unit that we have is

Therefore, it can be rewritten as:

Therefore, since the initial number was 0.779, the final value is

#LearnwithBrainly
I'll be happy to solve the problem using the information that
you gave in the question, but I have to tell you that this wave
is not infrared light.
If it was a wave of infrared, then its speed would be close
to 300,000,000 m/s, not 6 m/s, and its wavelength would be
less than 0.001 meter, not 12 meters.
For the wave you described . . .
Frequency = (speed) / (wavelength)
= (6 m/s) / (12 m)
= 0.5 / sec
= 0.5 Hz .
(If it were an infrared wave, then its frequency would be
greater than 300,000,000,000 Hz.)
The medium of ocean waves are In the case of a water wave in the ocean, the medium through which the wave travels is the ocean water. In the case of a sound wave moving from the church choir to the pews, the medium through which the sound wave<span> travels is the air in the room.</span>
Answer:
122.5 N/m
Explanation:
According to the law of conservation of energy, if there is no air resistance or frictional forces, the initial elastic potential energy of the spring toy is entirely converted into gravitational potential energy when the toy reaches the highest point.
Therefore, we can write:

where the term on the left is the initial elastic potential energy while the term on the right is the gravitational potential energy, and where
k is the spring constant
x = 0.02 m is the compression of the spring
m = 0.01 kg is the mass of the toy
h = 0.25 m is the height reached by the toy
is the acceleration due to gravity
Solving for k,

The distance between the two adjacent nodes = λ/2.
<h3>What is Wavelength?</h3>
A periodic wave's wavelength is its spatial period, or the length over which its form repeats. It is a property of both travelling waves and standing waves as well as other spatial wave patterns. It is the distance between two successive corresponding locations of the same phase on the wave, such as two nearby crests, troughs, or zero crossings. The spatial frequency is the reciprocal of wavelength. The Greek letter lambda (λ) is frequently used to represent wavelength. The term wavelength is also occasionally used to refer to modulated waves, their sinusoidal envelopes, or waves created by the interference of several sinusoids.
The distance between the two adjacent nodes = λ/2.
for the standing wave ,the distance between any two adjacent nodes or antinodes is 1/2 λ.
to learn more about the wavelength go to - brainly.com/question/6297363
#SPJ4