The probability of drawing two green marbles, with replacement is ![\frac{9}{25}](https://tex.z-dn.net/?f=%5Cfrac%7B9%7D%7B25%7D)
<h3><u>Solution:</u></h3>
Given that There are 4 red and 6 green marbles in a jar
<em><u>To find: probability of drawing two green marbles, with replacement</u></em>
The probability of an event is given as:
![\text {probability }=\frac{\text { number of favourable outcomes }}{\text { total number of possible outcomes }}](https://tex.z-dn.net/?f=%5Ctext%20%7Bprobability%20%7D%3D%5Cfrac%7B%5Ctext%20%7B%20number%20of%20favourable%20outcomes%20%7D%7D%7B%5Ctext%20%7B%20total%20number%20of%20possible%20outcomes%20%7D%7D)
Here total number of possible outcomes = 4 red + 6 green marbles = 10
Favourable outcome is drawing two green marbles with replacement
So favourable outcome = 6
<em><u>So probabilty of choosing green marble:</u></em>
![probability = \frac{6}{10} = \frac{3}{5}](https://tex.z-dn.net/?f=probability%20%3D%20%5Cfrac%7B6%7D%7B10%7D%20%3D%20%5Cfrac%7B3%7D%7B5%7D)
Now given that with replacement, so we get
![\text { probability }=\frac{3}{5} \times \frac{3}{5}=\frac{9}{25}](https://tex.z-dn.net/?f=%5Ctext%20%7B%20probability%20%7D%3D%5Cfrac%7B3%7D%7B5%7D%20%5Ctimes%20%5Cfrac%7B3%7D%7B5%7D%3D%5Cfrac%7B9%7D%7B25%7D)
Thus probability is ![\frac{9}{25}](https://tex.z-dn.net/?f=%5Cfrac%7B9%7D%7B25%7D)