La rueda recorre una distancia de 75.420 metros tras 60 vueltas. (Correct choice: A)
<h3>Cuánta distancia recorre una rueda que da 60 vueltas?</h3>
La rueda se desplaza sobre el suelo mediante un tipo de movimiento conocido como rodadura, en la que la rueda experimenta rotación y traslación, cuyo centro instantáneo de rotación es el punto de contacto entre la rueda y el suelo.
Si no existe deslizamiento de la rueda con respecto al suelo, entonces la distancia recorrida tras una revolución de la rueda (s), en metros, es descrita por la siguiente ecuación:
s = 2π · r (1)
Donde r es el radio de la rueda, en metros.
Si tenemos que r = 0.20 m, entonces la distancia recorrida es:
s = 2π · (0.20 m)
s ≈ 1.257 m
Asimismo, la distancia recorrida es directamente proporcional al número de revoluciones de la rueda es y la distancia recorrida tras 60 vueltas es determinada por regla de tres simple:
S = 60 vueltas × (1.257 m / 1 vuelta)
S = 75.420 metros
La rueda recorre una distancia de 75.420 metros tras 60 vueltas.
Para aprender más sobre el movimiento de ruedas: brainly.com/question/2862170
#SPJ1
Answer:
t + 0.8 =1.5
Step-by-step explanation:
Our objective is to get to 1.5. we know that part of the distance is 0.8 but we don't know the other half (t).
Answer:
8 number of visits will be the total cost of the visits (including the price of the discount card) be less expensive for a family of 2 adults and 1 child if they have purchased the discount card
Step-by-step explanation:
Price without Discount Card Price with Discount Card
Ticket (12 & Under) $10 $8
Adult's Ticket $15 $12
Let x be the number of visits
Price without discount card for 2 adults and 1 child ticket
Price without discount for x visits = 
Price with discount for x visits =
Now to find For what number of visits will the total cost of the visits (including the price of the discount card) be less expensive for a family of 2 adults and 1 child if they have purchased the discount card
57+32x< 40x
57<8x
7.1<x
So, 8 number of visits will be the total cost of the visits (including the price of the discount card) be less expensive for a family of 2 adults and 1 child if they have purchased the discount card
Answer:
m(ABC) = 218°
Step-by-step explanation:
The measure of any arc with end points of an inscribed angle = 2 × inscribed angle
Inscribed angle = m<AMC = 109°
Intercepted arc = m(ABC)
Therefore,
m(ABC) = 2 × 109°
m(ABC) = 218°