The potential energy of an object is defined by the equation: PE = mgh, where m = the mass of the object, g = the gravitational acceleration and h = the object's height above the ground.
So, the work was done by that hot air-balloon is <u>30,000 J or 30 kJ</u>.
<h3>Introduction</h3>
Hi ! In this question, I will help you. <u>Work is the amount of force exerted to cause an object to move a certain distance from its starting point</u>. In physics, the amount of work will be proportional to the increase in force and increase in displacement. Amount of work can be calculated by this equation :

With the following condition :
- W = work (J)
- F = force (N)
- s = shift or displacement (m)
Now, the s (displacement) can be written as ∆h (altitude change) because the object move to vertical line. The formula can also be changed to:

With the following condition :
- W = work (J)
- F = force (N)
= change of altitude (m)
If an object has mass, then the object will also be affected by gravity. Always remember that F = m × g. So that :


With the following condition :
- W = work (J)
- m = mass of the object (kg)
- g = acceleration of the gravity (m/s²)
= change of altitude (m)
<h3>Problem Solving</h3>
We know that :
- F = force = 100 N
= change of altitude 300 m
What was asked :
Step by step :



<h3>Conclusion</h3>
So, the work was done by that hot air-balloon is 30,000 J or 30 kJ.
<h3>See More :</h3>
Answer: 50.7 J
Explanation:
Given
mass of lion is 
The initial speed of the lion is 
increased speed of lion is 
Initially, its kinetic energy is 
Final kinetic energy 
work did by lion after speed up is 
![\Rightarrow W=\dfrac{1}{2}\times 2.6[8^2-5^2]\\\\\Rightarrow W=1.3\times [39]=50.7\ J](https://tex.z-dn.net/?f=%5CRightarrow%20W%3D%5Cdfrac%7B1%7D%7B2%7D%5Ctimes%202.6%5B8%5E2-5%5E2%5D%5C%5C%5C%5C%5CRightarrow%20W%3D1.3%5Ctimes%20%5B39%5D%3D50.7%5C%20J)
The concept required to solve this problem is related to the wavelength.
The wavelength can be defined as the distance between two positive crests of a wave.
The waves are in phase, then the first distance is

And out of the phase when

Thus the wavelength is

Here,
Wavelength
If we rearrange the equation to find it, we will have



Therefore the wavelength of the sound is 20cm.