Answer:
Explanation:
The velocity of the wrench must be equal to the velocity of the truck . So momentum of the wrench before it hits the wall
= mv = 6 x 13.3 = 79.8 kg m /s
If resisting force of wall be F , impulse on the wrench = F x time
= F x .07
Impulse = change in momentum of the wrench = mv - 0 = mv = 79.8 kgm/s
So F x .07 = 79.8
F = 1140 N .
Answer:
if the object is not in motion
Explanation:
Answer: 815.51 m
Explanation:
This situation is related to projectile motion or parabolic motion, in which the initial velocity of the bullet has only y-component, since it was fired straight up. In addition, we are dealing with constant acceleration (due gravity), therefore the following equations will be useful to solve this problem:
(1)
(2)
Where:
is the final velocity of the bullet
is the initial velocity of the bullet
is the acceleration due gravity, always directed downwards
is the time
is the vertical position of the bullet at 
Let's begin by finding
from (1):
(3)
(4)
Now we have to substitute (4) in (2):
(5)
Isolating
:
This is the displacement of the bullet after 6.9 s
Answer:
Ocean-Ocean Convergence
As the subducting plate is pushed deeper into the mantle, it melts. The magma this creates rises and erupts. This forms a line of volcanoes, known as an island arc