Newtons second law says that the acceleration of an object (produced by a net force) is directly proportional to that magnitude of the net force. E.g. F = ma
where F is the net force of an object, m is mass and a is acceleration.
For example, if an object had a large mass, there would have to be more force in order to move it than if it was lighter.
In a linear motion, if you pushed two objects, one slightly larger than the other, with the same force, the acceleration of the smaller object would be bigger than the larger one. So the motion (change in position over time), of the larger object would be seen as lesser than the smaller one (in a situation where both forces are equal).
Answer:
Wavelength, frequency and the photon energy changes as the one goes across the ranges of the electro-magnetic radiations.
Explanation:
Electro-magnetic radiations may be defined as the form of energy that is radiated or given by the electro-magnetic radiations. The visible light that we can see is the one of the electro-magnetic radiations. Other forms are the radio waves, gamma waves, UV rays, infrared radiations, etc.
The wavelength of the radiations decreases as we go from a. radio waves -- b. infrared radiation -- c. visible light -- d. ultraviolet radiation -- e. gamma radiation.
The frequency of the radiations increases when we move from a. radio waves -- b. infrared radiation -- c. visible light -- d. ultraviolet radiation -- e. gamma radiation.
The photon energy of the radiations increases when we move from a. radio waves -- b. infrared radiation -- c. visible light -- d. ultraviolet radiation -- e. gamma radiation.
Answer:
Common stock
Explanation:
Common stock is also regarded to as shares in which dividends are paid to the holders according to how profitable the organization is.
Common stock is a type of equity security and it is also the least considered in the case of bankruptcy due to its variability and the probability of stockholders not getting anything because of the debtor being insolvent.
If you’re doing potential and kinetic energy then the answer is potential.