Answer:
![\frac{\sqrt[4]{3x^2} }{2y}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B4%5D%7B3x%5E2%7D%20%7D%7B2y%7D)
Step-by-step explanation:
We can simplify the expression under the root first.
Remember to use 
Thus, we have:
![\sqrt[4]{\frac{24x^{6}y}{128x^{4}y^{5}}} \\=\sqrt[4]{\frac{3x^{2}}{16y^{4}}}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B%5Cfrac%7B24x%5E%7B6%7Dy%7D%7B128x%5E%7B4%7Dy%5E%7B5%7D%7D%7D%20%5C%5C%3D%5Csqrt%5B4%5D%7B%5Cfrac%7B3x%5E%7B2%7D%7D%7B16y%5E%7B4%7D%7D%7D)
We know 4th root can be written as "to the power 1/4th". Then we can use the property 
<em>So we have:</em>
<em>
</em>
<em />
<em>Option D is right.</em>
Given,
The coordinates of the point on the circle is (-4, -2).
The coordinates of the center of the circle is (-8, -10).
Reuired
The length of the center of the circle.
By using the distance formula, the radius of the circle can be calculated.
The distance formula is,

Substituting the value of the coordinates of the points,
![\begin{gathered} Distance=\sqrt{(-10-(-2))^2+(-8-(-4))^2} \\ =\sqrt{(-10+2)^2+(-8+4)^2} \\ =\sqrt{(-8)^2+(-4)^2} \\ =\sqrt{64+16} \\ =\sqrt{80} \\ =\sqrt{4\times4\times5} \\ =4\sqrt[]{5} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20Distance%3D%5Csqrt%7B%28-10-%28-2%29%29%5E2%2B%28-8-%28-4%29%29%5E2%7D%20%5C%5C%20%3D%5Csqrt%7B%28-10%2B2%29%5E2%2B%28-8%2B4%29%5E2%7D%20%5C%5C%20%3D%5Csqrt%7B%28-8%29%5E2%2B%28-4%29%5E2%7D%20%5C%5C%20%3D%5Csqrt%7B64%2B16%7D%20%5C%5C%20%3D%5Csqrt%7B80%7D%20%5C%5C%20%3D%5Csqrt%7B4%5Ctimes4%5Ctimes5%7D%20%5C%5C%20%3D4%5Csqrt%5B%5D%7B5%7D%20%5Cend%7Bgathered%7D)
Hence,
Answer:
Around 30 times I believe
Answer:
Part C is 52a+31 because you combining like terms so you would have to add 44a and 8a to get 52a and then subtract 33 to -32 so your final anwser would be 52a+31
Step-by-step explanation:
Answer: 9
Step-by-step explanation: