The velocity of the girl is -4.8 m/s.
Using the principle of conservation of linear momentum, The total momentum of bodies before and after collision is constant. Since the two objects are stationary, the initial momentum of each body is zero.
Thus;
0 = (80 × 3) + (50 × v)
0 = 240 + 50 v
-240 = 50 v
v = -240/50
v = -4.8 m/s
Note that the negative sign shows that the velocity of the girl is in opposite direction that that of the girl.
Learn more about momentum: brainly.com/question/904448
Ok i apologise for the messy working but I'll try and explain my attempt at logic
Also note i ignore any air resistance for this.
First i wrote the two equations I'd most likely need for this situation, the kinetic energy equation and the potential energy equation.
Because the energy right at the top of the swing motion is equal to the energy right in the "bottom" of the swing's motion (due to conservation of energy), i made the kinetic energy equal to the potential energy as indicated by Ek = Ep.
I also noted the "initial" and "final" height of the swing with hi and hf respectively.
So initially looking at this i thought, what the heck, there's no mass. Then i figured that using the conservation of energy law i could take the mass value from the Ek equation and use it in the Ep equation. So what i did was take the Ek equation and rearranged it for m as you can hopefully see. Then i substituted the rearranged Ek equation into the Ep equation.
So then the equation reads something like Ep = (rearranged Ek equation for m) × g (which is -9.81) × change in height (hf - hi).
Then i simplify the equation a little. When i multiply both sides by v^2 i can clearly see that there is one E on each side (at that stage i don't need to clarify which type of energy it is because Ek = Ep so they're just the same anyway). So i just canceled them out and square rooted both sides.
The answer i got was that the max velocity would be 4.85m/s 3sf, assuming no losses (eg energy lost to friction).
I do hope I'm right and i suppose it's better than a blank piece of paper good luck my dude xx
Every action has an equal or opposite reaction.
You weigh 60kg
<span>So your acceleration is 6N / 60 kg = 0.1m/s^2</span>
Rise over run at 1 second
It’s the same slope from 0 to 2 seconds
10/2=5mps
As a note all time points between 0and 2 will have this instantaneous velocity
Instantaneous velocity at time 2 is 0
Answer:
As the ball falls from C to E, potential energy is converted to kinetic energy. The velocity of the ball increases as it falls, which means that the ball attains its greatest velocity, and thus its greatest kinetic energy
Explanation: