Answer:
25 m/s
Explanation:
from the question you van see that some detail is missing, however i found this same question using internet search engines on: 'https://www.chegg.com/homework-help/questions-and-answers/light-rail-passenger-trains-provide-transportation-within-cities-speed-slow-nearly-constan-q5808369'
here is the complete question:
'Light-rail passenger trains that provide transportation within and between cities speed up and slow down with a nearly constant (and quite modest) acceleration. A train travels through a congested part of town at 7.0m/s . Once free of this area, it speeds up to 12m/s in 8.0 s. At the edge of town, the driver again accelerates, with the same acceleration, for another 16 s to reach a higher cruising speed. What is the final Speed?'
SOLUTION
initial speed (u) = 7 m/s
final speed (v) = 13 m/s
initial acceleration time (t1) = 8 s
final acceleration time (t2) = 16 s
what is the higher cruising speed?
acceleration = 
acceleration =
= 0.75 m/s^{2}
since the train accelerates at the same rate, the increase in speed will be = acceleration x time (t2)
= 0.75 x 16 = 12 m/s
therefore the higher cruising speed = increase in speed + initial speed
= 12 + 13 = 25 m/s
Answer:
VB − VA = g tAB & (VA + VB)/2 = h / tAB
Explanation:
s = h = Displacement
tAB = t = Time taken
VA = u = Initial velocity
VB = v = Final velocity
a = g = Acceleration due to gravity = 9.8 m/s²




Hence, the equations VB − VA = g tAB & (VA + VB)/2 = h / tAB will be used
Answer:
A. attracted to the negative terminal of the voltage source.
Explanation:
When an electron is displaced in a semiconductor, the hole that's left behind is
A. attracted to the negative terminal of the voltage source.
The electron leaving leaves a net + charge, which is attracted to the negative terminal.
Answer:
The mass of the rule is 56.41 g
Explanation:
Given;
mass of the object suspended at zero mark, m₁ = 200 g
pivot of the uniform meter rule = 22 cm
Total length of meter rule = 100 cm
0 22cm 100cm
-------------------------Δ------------------------------------
↓ ↓
200g m₂
Apply principle of moment
(200 g)(22 cm - 0) = m₂(100 cm - 22 cm)
(200 g)(22 cm) = m₂(78 cm)
m₂ = (200 g)(22 cm) / (78 cm)
m₂ = 56.41 g
Therefore, the mass of the rule is 56.41 g
<span>In Ionic type of bonding, electrons are lost (more
protons than electrons and positive charge) or gained (more electrons than
protons, still a negative charge) by atoms, and the atoms are held together by
electrical attraction in the process. Covalent bondings are the sharing of electrons
as well as partial bondings. Covalent bondings’ electrons have the same charges
thus, there is no gaining or losing electrons in the process of sharing. Strong
bondings are applicable only to Hydrogen (H) atoms. </span>