In telecommunication systems, Carrier frequency is a technical term used to indicate: ... The frequency of the unmodulated electromagnetic wave at the output of a conventional amplitude-modulated (AM-unsupressed carrier), or frequency-modulated (FM), or phase-modulated (PM) radio transmitter.
Answer:
1.-E=1000N/C to the LEFT
2.-The electric field inside a conductor in electrostatic state is always zero (conductor proprieties).
3.-The voltmeter read 0V as differential voltage between two points from the conductor
Explanation:
1.The electric field inside the conductor must be zero (conductor proprieties). Then the charges create a electric field equal an opposite to the external electric field. In other words E=1000N/C to the LEFT
2. The electric field inside a conductor in electrostatic state is always zero. As shown in the figure the electric field induced by the charges in the sphere surface cancelled the EXTERN electric field.
3.If the Electric field inside the conductor is zero, that means that the Voltage in the hole conductor is constant (conductor proprieties). In other words the the voltmeter read 0v as differential voltage between two points from the conductor.
This is false. they flow west to east
Answer:
E. Zero Maximum
Explanation:
At the point of maximum displacement, the speed is zero while the restoring force is maximum. In fact:
- The restoring force is given by
, where k is the spring constant and x is the displacement - at the point of maximum displacement, x is maximum, so F is maximum as well
- the total energy of the system is sum of kinetic energy and elastic potential energy:

where m is the mass of the system and v is the speed. Since E (the total energy) is constant due to the law of conservation of energy, we have that when K increases, U decreases, and viceversa. As a result, when x increases, v decreases, and viceversa. At the point of maximum displacement, x is maximum, so v will have its minimum value (which is zero, since the system is changing direction of motion).