Here, we are required to determine how fast is you drink, sitting in the cup holder, travelling relative to the car.
- The speed of the drink, sitting in the cup holder, relative to the car is; 0m/s
From the laws of relative motion,
- <em>when object A and Object B are travelling with speed a and b respectively in the same direction, the speed of Object A relative to B is;. (a - b)</em>
- <em>when object A and Object B are travelling with speed a and b respectively in the same direction, the speed of Object A relative to B is;. (a - b)when object A and Object B are travelling with speed a and b respectively in opposite directions, the speed of Object A relative to B is; (a+b)</em>
- <em>when object A and Object B are travelling with speed a and b respectively in the same direction, the speed of Object A relative to B is;. (a - b)when object A and Object B are travelling with speed a and b respectively in opposite directions, the speed of Object A relative to B is; (a+b)when object A and Object B are travelling with speed a and b respectively in the same direction, where speed a = speed b, then the speed of object A relative to object B is; zero(0).</em>
Evidently, the scenario in the question is similar to the third scenario above. The cup, sitting in the cup holder is travelling with the car at the same constant speed 10m/s.
Therefore, the speed of the drink relative to the car is zero(0).
Read more:
brainly.com/question/20549055
Answer: Their u go i found it their was about 3 pages i did not no what pages u had to do.
Explanation:
Answer:
Earth's water is always in movement, and the natural water cycle, also known as the hydrologic cycle, describes the continuous movement of water on, above, and below the surface of the Earth. Water is always changing states between liquid, vapor, and ice, with these processes happening in the blink of an eye and over millions of years.
Hope this helped!! :))
Explanation:
Answer:

Explanation:
Given that:
- Area of the plate of capacitor 1= Area of the plate of capacitor 2=A
- separation distance of capacitor 2,

- separation distance of capacitor 1,

- quantity of charge on capacitor 2,

- quantity of charge on capacitor 1,

We know that the Capacitance of a parallel plate capacitor is directly proportional to the area and inversely proportional to the distance of separation.
Mathematically given as:
.....................................(1)
where:
k = relative permittivity of the dielectric material between the plates= 1 for air

From eq. (1)
For capacitor 2:

For capacitor 1:

![C_1=\frac{1}{2} [ \frac{k.\epsilon_0.A}{d}]](https://tex.z-dn.net/?f=C_1%3D%5Cfrac%7B1%7D%7B2%7D%20%5B%20%5Cfrac%7Bk.%5Cepsilon_0.A%7D%7Bd%7D%5D)
We know, potential differences across a capacitor is given by:
..........................................(2)
where, Q = charge on the capacitor plates.
for capacitor 2:


& for capacitor 1:


![V_1=8\times [\frac{Q.d}{k.\epsilon_0.A}]](https://tex.z-dn.net/?f=V_1%3D8%5Ctimes%20%5B%5Cfrac%7BQ.d%7D%7Bk.%5Cepsilon_0.A%7D%5D)

Answer:

Explanation:
Given data
Length of tube L=0.632 m
Speed of sound v=344 m/s
To find
Fundamental frequency f
Solution
The fundamental frequency of the tube can be given as:
