Answer:
9.6m/s
Explanation:
Using the equation S=d/t where s=speed, d=distance, and t=time
plug in the known variables
S=120m/12.5s
S=9.6m/s
The answer is 1.33 i hope this helps you
As the scattering angle of the photon increases, the wavelength associated with the photon increases.
<h3><u>
Explanation:</u></h3>
The particle with quantum mechanical property is known as Compton wavelength. The wavelength of a photon increases during collision. When the scattering angle of the photon is 0 degree then the photon's wavelength increases by 0 and when the scattering angle is 180 degree then the wavelength of the photon will become double. This is known as Compton wavelength.
When a photon undergoes collision process, the photo loses its energy and this energy is transferred to the electrons. This causes energy of the photon to decrease and thus the frequency also decreases. Thus, the wavelength of the photon will increase.
Answer:
Masses and distance between them
Explanation:
The gravitational force between two objects can be calculated using Newton's Gravitational Law.
However, using logic, we can already dictate what the answer will be, for example. We know that the bigger an object is, the stronger its gravity is. This can be seen with how the moon is much smaller, and also has much less gravity.
Also, the distance between two objects also influences the gravity. This can be seen the further an object gets from Earth, the less of a pull the gravitational field has on it. Another example is that Pluto (being very far from the sun) has less of a gravitational effect from the sun, in comparison to Mercury (the closest plant to the sun).
Answer:
- magnitude : 1635.43 m
- Angle: 130°28'20'' north of east
Explanation:
First, we will find the Cartesian Representation of the
and
vectors. We can do this, using the formula

where
its the magnitude of the vector and θ the angle. For
we have:


where the unit vector
points east, and
points north. Now, the
will be:

Now, taking the sum:

This is




Now, for the magnitude, we just have to take its length:



For its angle, as the vector lays in the second quadrant, we can use:



