Explanation:
1) Radar uses radio waves, which are a type of electromagnetic energy. Sonar uses the echo principle by sending out sound waves underwater or through the human body to locate objects. Sound waves are a type of acoustic energy. Because of the different type of energy used in radar and sonar, each has its own applications.
2)Radar systems operate using radio waves primarily in air, while sonar systems operate using sound waves primarily in water (Minkoff, 1991). Despite the difference in medium, similarities in the principles of radar and sonar can frequently result in technological convergence.
Answer:
1.) Longitudinal waves
2.) Transverse waves
3.) Longitudinal waves
Explanation:
The sound of one whale calling another whale underwater. is a longitudinal wave since the medium, in this case the body of water, is vibrating parallel to the direction of propagation of the wave.
A pulse sent down a stretched rope by snapping one end of it. ( transverse wave) because its oscillations are perpendicular to the direction of the wave or path of propagation
The vibrations in a guitar string
Longitudinal wave. Because its oscillations are parallel to the direction of the wave or path of propagation
Answer:
we see it is a linear relationship.
Explanation:
The magnetic flux is u solenoid is
B = μ₀ N/L I
where N is the number of loops, L the length and I the current
By applying this expression to our case we have that the current is the same in all cases and we can assume the constant length. Consequently we see that the magnitude of the magnetic field decreases with the number of loops
B = (μ₀ I / L) N
the amount between paracentesis constant, in the case of 4 loop the field is worth
B = cte 4
N B
4 4 cte
3 3 cte
2 2 cte
1 1 cte
as we see it is a linear relationship.
In addition, this effect for such a small number of turns the direction of the field that is parallel to the normal of the lines will oscillate,
Answer : The specific heat capacity of the alloy 
Explanation :
In this problem we assumed that heat given by the hot body is equal to the heat taken by the cold body.


where,
= specific heat of alloy = ?
= specific heat of water = 
= mass of alloy = 21.6 g
= mass of water = 50.0 g
= final temperature of system = 
= initial temperature of alloy = 
= initial temperature of water = 
Now put all the given values in the above formula, we get


Therefore, the specific heat capacity of the alloy 