Answer:
A wind turbine captures the wind, which then produces a renewable energy source. The wind makes the rotor spin; as the rotor spins, the movement of the blades drives a generator that creates energy. The motion of the blades turning is kinetic energy. It is this power that we convert into electricity.
Answer:
The x-component and y-component of the velocity of the cruise ship relative to the patrol boat is -5.29 m/s and 0.18 m/s.
Explanation:
Given that,
Velocity of ship = 2.00 m/s due south
Velocity of boat = 5.60 m/s due north
Angle = 19.0°
We need to calculate the component
The velocity of the ship in term x and y coordinate


The velocity of the boat in term x and y coordinate
For x component,

Put the value into the formula


For y component,

Put the value into the formula


We need to calculate the x-component and y-component of the velocity of the cruise ship relative to the patrol boat
For x component,

Put the value into the formula


For y component,

Put the value into the formula


Hence, The x-component and y-component of the velocity of the cruise ship relative to the patrol boat is -5.29 m/s and 0.18 m/s.
Answer:
139.6m/s
Explanation:
Calculate the tension first, T=m*g
mass(m): 1750kg, gravity(g): 9.8m/s^2
T= 1750*9.8
=17150N
Then calculate the wave speed using the equation v = √ (T/μ)
v= √(17150N)/(0.88kg/m)
=139.6m/s
A soccer ball is traveling at a velocity of 50 m/s. The kinetic energy of the ball is 500 J.The mass of the soccer ball is 0.4 kgs. This answer is derived from the formula K=1/2 MV^2.So velocity and kinetic energy are given from that mass of the ball is calculated.By substituting the values 500=1/2*M*50*50 which gives M=0.4 Kgs.<span>
</span>
Answer:
Recall that the electric field outside a uniformly charged solid sphere is exactly the same as if the charge were all at a point in the centre of the sphere:

lnside the sphere, the electric field also acts like a point charge, but only for the proportion of the charge further inside than the point r:

To find the potential, we integrate the electric field on a path from infinity (where of course, we take the direct path so that we can write the it as a 1 D integral):

=![\frac{q}{4\pi e_{0} } [\frac{1}{R} -\frac{r^{2}-R^{2} }{2R^{3} } ]](https://tex.z-dn.net/?f=%5Cfrac%7Bq%7D%7B4%5Cpi%20e_%7B0%7D%20%7D%20%5B%5Cfrac%7B1%7D%7BR%7D%20-%5Cfrac%7Br%5E%7B2%7D-R%5E%7B2%7D%20%20%7D%7B2R%5E%7B3%7D%20%7D%20%5D)
∴NOTE: Graph is attached