Answer:
2.93g
Explanation:first, let us calculate the number of mole of NaCl present in the solution. This is illustrated below:
Molarity = 0.5M
Volume = 100cm^3 = 100/1000 = 0.1L
Mole =?
Molarity = mole /Volume
Mole = Molarity x Volume
Mole of NaCl = 0.5 x 0.1 = 0.05mole
Now we can obtain the mass of NaCl as follows:
Molar Mass of NaCl = 23 + 35.5 = 58.5g/mol
Mole of NaCl = 0.05mol
Mass of NaCl =?
Mass = number of mole x molar Mass
Mass of NaCl = 0.05 x 58.5
Mass of NaCl = 2.93g
20600Cal
Explanation:
Given parameters:
Mass of water = 319.5g
Initial temperature = 35.7°C
Final temperature = 100°C
Unknown:
Calories needed to heat the water = ?
Solution:
The calories is the amount of heat added to the water. This can be determined using;
H = m c Ф
c = specific heat capacity of water = 4.186J/g°C
H is the amount of heat
Ф is the change in temperature
H = m c (Ф₂ - Ф₁)
H = 319.5 x 4.186 x (100 - 35.7) = 85996.56J
Now;
1kilocalorie = 4184J
85996.56J to kCal;
= 20.6kCal = 20600Cal
learn more:
Specific heat brainly.com/question/3032746
#learnwithBrainly
Your answer should be:
<span>Extrusive igneous rock</span>
<h2>Answer:</h2>
It means the waves collides and constructive interference occurred.
<h3>Explanation:</h3>
If the two waves coming from the opposite direction collide with each other, there are two way of their interference.
- Constructive interference: An interference which results in the increase in energy. And it is when crust of a wave comes on the crust of second wave.
- Destructive interference: An interference which results in decrease in energy of the resulting wave and colliding waves cancel the result of each other.
Hence in experiment there will be constructive interference.
Answer:
3.67 moles of N
Explanation:
The epinephrine's chemical formula is: C₉H₁₃O₃N
We were told that a chemist found that in a mesaure of epinephrine, he found 33 moles of C
We must know that 9 moles of C are in 1 mol of C₉H₁₃O₃N so, let's make a rule of three:
If 9 moles of C are found in 1 mol of C₉H₁₃O₃N
Therefore 33 moles of C must be found in (33 .1) / 9 = 3.67 moles of C₉H₁₃O₃N
There is a second rule of three, then.
In 1 mol of C₉H₁₃O₃N we have 1 mol of N
Then, 3.67 moles C₉H₁₃O₃N must have (3.67 . 1) / 1 = 3.67 moles of N
Remember 1 mol of C₉H₁₃O₃N has 9 moles of C, 13 moles of H, 3 moles of O and 1 mol of N